

 libvips

 A fast image processing library with low memory needs.

 Download
 Install
 Documentation
 Issues
 Wiki
 libvips projects
 libvips on GitHub

	
Top |
 Description |
 Object Hierarchy |
 Properties
				

	
VipsForeign

VipsForeign — load and save images in a variety of formats

	

Stability Level

Stable, unless otherwise indicated

Functions

	
void *
	
vips_foreign_map ()

	const char *
	
vips_foreign_find_load ()

	const char *
	
vips_foreign_find_load_buffer ()

	const char *
	
vips_foreign_find_load_source ()

	
VipsForeignFlags
	
vips_foreign_flags ()

	
gboolean
	
vips_foreign_is_a ()

	
gboolean
	
vips_foreign_is_a_buffer ()

	
gboolean
	
vips_foreign_is_a_source ()

	
void
	
vips_foreign_load_invalidate ()

	const char *
	
vips_foreign_find_save ()

	
gchar **
	
vips_foreign_get_suffixes ()

	const char *
	
vips_foreign_find_save_buffer ()

	const char *
	
vips_foreign_find_save_target ()

	
int
	
vips_vipsload ()

	
int
	
vips_vipsload_source ()

	
int
	
vips_vipssave ()

	
int
	
vips_vipssave_target ()

	
int
	
vips_openslideload ()

	
int
	
vips_openslideload_source ()

	
int
	
vips_jpegload ()

	
int
	
vips_jpegload_buffer ()

	
int
	
vips_jpegload_source ()

	
int
	
vips_jpegsave_target ()

	
int
	
vips_jpegsave ()

	
int
	
vips_jpegsave_buffer ()

	
int
	
vips_jpegsave_mime ()

	
int
	
vips_webpload_source ()

	
int
	
vips_webpload ()

	
int
	
vips_webpload_buffer ()

	
int
	
vips_webpsave_target ()

	
int
	
vips_webpsave ()

	
int
	
vips_webpsave_buffer ()

	
int
	
vips_webpsave_mime ()

	
int
	
vips_tiffload ()

	
int
	
vips_tiffload_buffer ()

	
int
	
vips_tiffload_source ()

	
int
	
vips_tiffsave ()

	
int
	
vips_tiffsave_buffer ()

	
int
	
vips_tiffsave_target ()

	
int
	
vips_openexrload ()

	
int
	
vips_fitsload ()

	
int
	
vips_fitssave ()

	
int
	
vips_analyzeload ()

	
int
	
vips_rawload ()

	
int
	
vips_rawsave ()

	
int
	
vips_rawsave_fd ()

	
int
	
vips_csvload ()

	
int
	
vips_csvload_source ()

	
int
	
vips_csvsave ()

	
int
	
vips_csvsave_target ()

	
int
	
vips_matrixload ()

	
int
	
vips_matrixload_source ()

	
int
	
vips_matrixsave ()

	
int
	
vips_matrixsave_target ()

	
int
	
vips_matrixprint ()

	
int
	
vips_magickload ()

	
int
	
vips_magickload_buffer ()

	
int
	
vips_magicksave ()

	
int
	
vips_magicksave_buffer ()

	
int
	
vips_pngload_source ()

	
int
	
vips_pngload ()

	
int
	
vips_pngload_buffer ()

	
int
	
vips_pngsave_target ()

	
int
	
vips_pngsave ()

	
int
	
vips_pngsave_buffer ()

	
int
	
vips_ppmload ()

	
int
	
vips_ppmload_source ()

	
int
	
vips_ppmsave ()

	
int
	
vips_ppmsave_target ()

	
int
	
vips_matload ()

	
int
	
vips_radload_source ()

	
int
	
vips_radload ()

	
int
	
vips_radload_buffer ()

	
int
	
vips_radsave ()

	
int
	
vips_radsave_buffer ()

	
int
	
vips_radsave_target ()

	
int
	
vips_pdfload ()

	
int
	
vips_pdfload_buffer ()

	
int
	
vips_pdfload_source ()

	
int
	
vips_svgload ()

	
int
	
vips_svgload_buffer ()

	
int
	
vips_svgload_string ()

	
int
	
vips_svgload_source ()

	
int
	
vips_gifload ()

	
int
	
vips_gifload_buffer ()

	
int
	
vips_gifload_source ()

	
int
	
vips_gifsave ()

	
int
	
vips_gifsave_buffer ()

	
int
	
vips_gifsave_target ()

	
int
	
vips_heifload ()

	
int
	
vips_heifload_buffer ()

	
int
	
vips_heifload_source ()

	
int
	
vips_heifsave ()

	
int
	
vips_heifsave_buffer ()

	
int
	
vips_heifsave_target ()

	
int
	
vips_niftiload ()

	
int
	
vips_niftiload_source ()

	
int
	
vips_niftisave ()

	
int
	
vips_jp2kload ()

	
int
	
vips_jp2kload_buffer ()

	
int
	
vips_jp2kload_source ()

	
int
	
vips_jp2ksave ()

	
int
	
vips_jp2ksave_buffer ()

	
int
	
vips_jp2ksave_target ()

	
int
	
vips_jxlload_source ()

	
int
	
vips_jxlload_buffer ()

	
int
	
vips_jxlload ()

	
int
	
vips_jxlsave ()

	
int
	
vips_jxlsave_buffer ()

	
int
	
vips_jxlsave_target ()

	
int
	
vips_dzsave ()

	
int
	
vips_dzsave_buffer ()

	
int
	
vips_dzsave_target ()

Properties

	VipsAccess	access	Read / Write
	gboolean	disc	Read / Write
	gboolean	fail	Read / Write
	VipsFailOn	fail-on	Read / Write
	VipsForeignFlags	flags	Read / Write
	gboolean	memory	Read / Write
	
VipsImage *	out	Read / Write
	gboolean	revalidate	Read / Write
	gboolean	sequential	Read / Write
	
VipsArrayDouble *	background	Read / Write
	
VipsImage *	in	Read / Write
	VipsForeignKeep	keep	Read / Write
	int	page-height	Read / Write
	
char *	profile	Read / Write
	gboolean	strip	Read / Write

Types and Values

	enum	VipsForeignFlags
	enum	VipsFailOn
	enum	VipsSaveable
	enum	VipsForeignKeep
	enum	VipsForeignSubsample
	enum	VipsForeignJpegSubsample
	enum	VipsForeignWebpPreset
	enum	VipsForeignTiffCompression
	enum	VipsForeignTiffPredictor
	enum	VipsForeignTiffResunit
	enum	VipsForeignPngFilter
	enum	VipsForeignPpmFormat
	enum	VipsForeignDzLayout
	enum	VipsForeignDzDepth
	enum	VipsForeignDzContainer
	enum	VipsForeignHeifCompression
	enum	VipsForeignHeifEncoder

Object Hierarchy

 GEnum
 ├── VipsFailOn
 ├── VipsForeignDzContainer
 ├── VipsForeignDzDepth
 ├── VipsForeignDzLayout
 ├── VipsForeignHeifCompression
 ├── VipsForeignHeifEncoder
 ├── VipsForeignJpegSubsample
 ├── VipsForeignPpmFormat
 ├── VipsForeignSubsample
 ├── VipsForeignTiffCompression
 ├── VipsForeignTiffPredictor
 ├── VipsForeignTiffResunit
 ├── VipsForeignWebpPreset
 ╰── VipsSaveable
 GFlags
 ├── VipsForeignFlags
 ├── VipsForeignKeep
 ╰── VipsForeignPngFilter
 GObject
 ╰── VipsObject
 ╰── VipsOperation
 ╰── VipsForeign
 ├── VipsForeignLoad
 ╰── VipsForeignSave

Includes

#include <vips/vips.h>

Description

This set of operations load and save images in a variety of formats.

Load and save

You can load and save from and to files, memory areas, and the libvips IO
abstractions, VipsSource and VipsTarget.

Use vips_foreign_find_load(), vips_foreign_find_load_buffer() and
vips_foreign_find_load_source() to find a loader for an object. Use
vips_foreign_find_save(), vips_foreign_find_save_buffer() and
vips_foreign_find_save_target() to find a saver for a format. You can then
run these operations using vips_call() and friends to perform the load or
save.

vips_image_write_to_file() and vips_image_new_from_file() and friends use
these functions to automate file load and save.

You can also invoke the operations directly, for example:

 	1
2
3
	vips_tiffsave(my_image, "frank.anything",
 "compression", VIPS_FOREIGN_TIFF_COMPRESSION_JPEG,
 NULL);

Image metadata

All loaders attach all image metadata as libvips properties on load.

You can change metadata with vips_image_set_int() and friends.

During save, you can use keep
 to specify which metadata to retain,
defaults to all, see VipsForeignKeep. Setting profile
 will
automatically keep the ICC profile.

Many page images

By default, libvips will only load the first page of many page or animated
images. Use page
 and n
 to set the start page and the number of pages to
load. Set n
 to -1 to load all pages.

Many page images are loaded as a tall, thin strip of pages.

Use vips_image_get_page_height() and vips_image_get_n_pages() to find the
page height and number of pages of a loaded image.

Use page_height
 to set the page height for image save.

Alpha save

Not all image formats support alpha. If you try to save an image with an
alpha channel to a format that does not support it, the alpha will be
automatically flattened out. Use background
 (default 0) to set the colour
that alpha should be flattened against.

Adding new formats

To add support for a new file format to vips, simply define a new subclass
of VipsForeignLoad or VipsForeignSave.

If you define a new operation which is a subclass of VipsForeign, support
for it automatically appears in all VIPS user-interfaces. It will also be
transparently supported by vips_image_new_from_file() and friends.

Writing a new loader

Add a new loader to VIPS by subclassing VipsForeignLoad. Subclasses need to
implement at least header()
.

header()
 must set at least the header fields of out
. load()
, if defined,
must load the pixels to real
.

The suffix list is used to select a format to save a file in, and to pick a
loader if you don't define is_a().

You should also define nickname
 and description
 in VipsObject.

As a complete example, here's code for a PNG loader, minus the actual
calls to libpng.

 	1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
	typedef struct _VipsForeignLoadPng {
 VipsForeignLoad parent_object;

 char *filename;
} VipsForeignLoadPng;

typedef VipsForeignLoadClass VipsForeignLoadPngClass;

G_DEFINE_TYPE(VipsForeignLoadPng, vips_foreign_load_png,
 VIPS_TYPE_FOREIGN_LOAD);

static VipsForeignFlags
vips_foreign_load_png_get_flags_filename(const char *filename)
{
 VipsForeignFlags flags;

 flags = 0;
 if (vips__png_isinterlaced(filename))
 flags = VIPS_FOREIGN_PARTIAL;
 else
 flags = VIPS_FOREIGN_SEQUENTIAL;

 return flags;
}

static VipsForeignFlags
vips_foreign_load_png_get_flags(VipsForeignLoad *load)
{
 VipsForeignLoadPng *png = (VipsForeignLoadPng *) load;

 return vips_foreign_load_png_get_flags_filename(png->filename);
}

static int
vips_foreign_load_png_header(VipsForeignLoad *load)
{
 VipsForeignLoadPng *png = (VipsForeignLoadPng *) load;

 if (vips__png_header(png->filename, load->out))
 return -1;

 return 0;
}

static int
vips_foreign_load_png_load(VipsForeignLoad *load)
{
 VipsForeignLoadPng *png = (VipsForeignLoadPng *) load;

 if (vips__png_read(png->filename, load->real))
 return -1;

 return 0;
}

static void
vips_foreign_load_png_class_init(VipsForeignLoadPngClass *class)
{
 GObjectClass *gobject_class = G_OBJECT_CLASS(class);
 VipsObjectClass *object_class = (VipsObjectClass *) class;
 VipsForeignClass *foreign_class = (VipsForeignClass *) class;
 VipsForeignLoadClass *load_class = (VipsForeignLoadClass *) class;

 gobject_class->set_property = vips_object_set_property;
 gobject_class->get_property = vips_object_get_property;

 object_class->nickname = "pngload";
 object_class->description = _("load png from file");

 foreign_class->suffs = vips__png_suffs;

 load_class->is_a = vips__png_ispng;
 load_class->get_flags_filename =
 vips_foreign_load_png_get_flags_filename;
 load_class->get_flags = vips_foreign_load_png_get_flags;
 load_class->header = vips_foreign_load_png_header;
 load_class->load = vips_foreign_load_png_load;

 VIPS_ARG_STRING(class, "filename", 1,
 _("Filename"),
 _("Filename to load from"),
 VIPS_ARGUMENT_REQUIRED_INPUT,
 G_STRUCT_OFFSET(VipsForeignLoadPng, filename),
 NULL);
}

static void
vips_foreign_load_png_init(VipsForeignLoadPng *png)
{
}

Writing a new saver

Call your saver in the class' build()
 method after chaining up. The
prepared image should be ready for you to save in ready
.

As a complete example, here's the code for the CSV saver, minus the calls
to the actual save routines.

 	1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
	typedef struct _VipsForeignSaveCsv {
 VipsForeignSave parent_object;

 char *filename;
 const char *separator;
} VipsForeignSaveCsv;

typedef VipsForeignSaveClass VipsForeignSaveCsvClass;

G_DEFINE_TYPE(VipsForeignSaveCsv, vips_foreign_save_csv,
 VIPS_TYPE_FOREIGN_SAVE);

static int
vips_foreign_save_csv_build(VipsObject *object)
{
 VipsForeignSave *save = (VipsForeignSave *) object;
 VipsForeignSaveCsv *csv = (VipsForeignSaveCsv *) object;

 if (VIPS_OBJECT_CLASS(vips_foreign_save_csv_parent_class)
 ->build(object))
 return -1;

 if (vips__csv_write(save->ready, csv->filename, csv->separator))
 	 return -1;

 return 0;
}

static void
vips_foreign_save_csv_class_init(VipsForeignSaveCsvClass *class)
{
 GObjectClass *gobject_class = G_OBJECT_CLASS(class);
 VipsObjectClass *object_class = (VipsObjectClass *) class;
 VipsForeignClass *foreign_class = (VipsForeignClass *) class;
 VipsForeignSaveClass *save_class = (VipsForeignSaveClass *) class;

 gobject_class->set_property = vips_object_set_property;
 gobject_class->get_property = vips_object_get_property;

 object_class->nickname = "csvsave";
 object_class->description = _("save image to csv file");
 object_class->build = vips_foreign_save_csv_build;

 foreign_class->suffs = vips__foreign_csv_suffs;

 save_class->saveable = VIPS_SAVEABLE_MONO;
 // no need to define ->format_table, we don't want the input
 // cast for us

 VIPS_ARG_STRING(class, "filename", 1,
 _("Filename"),
 _("Filename to save to"),
 VIPS_ARGUMENT_REQUIRED_INPUT,
 G_STRUCT_OFFSET(VipsForeignSaveCsv, filename),
 NULL);

 VIPS_ARG_STRING(class, "separator", 13,
 _("Separator"),
 _("Separator characters"),
 VIPS_ARGUMENT_OPTIONAL_INPUT,
 G_STRUCT_OFFSET(VipsForeignSaveCsv, separator),
 "\t");
}

static void
vips_foreign_save_csv_init(VipsForeignSaveCsv *csv)
{
 csv->separator = g_strdup("\t");
}

Functions

vips_foreign_map ()

void *
vips_foreign_map (const char *base,
 VipsSListMap2Fn fn,
 void *a,
 void *b);

Apply a function to every VipsForeignClass that VIPS knows about. Foreigns
are presented to the function in priority order.

Like all VIPS map functions, if fn
 returns NULL, iteration continues. If
it returns non-NULL, iteration terminates and that value is returned. The
map function returns NULL if all calls return NULL.

See also: vips_slist_map().

Parameters

	base
	base class to search below (eg. "VipsForeignLoad")
	
	fn
	function to apply to each VipsForeignClass.
	[scope call]
	a
	user data
	
	b
	user data
	

Returns

the result of iteration.

[transfer none]

vips_foreign_find_load ()

const char *
vips_foreign_find_load (const char *filename);

Searches for an operation you could use to load filename
. Any trailing
options on filename
 are stripped and ignored.

See also: vips_foreign_find_load_buffer(), vips_image_new_from_file().

Parameters

	filename
	file to find a loader for
	

Returns

 the name of an operation on success, NULL on error

vips_foreign_find_load_buffer ()

const char *
vips_foreign_find_load_buffer (const void *data,
 size_t size);

Searches for an operation you could use to load a memory buffer. To see the
range of buffer loaders supported by your vips, try something like:

	vips -l | grep load_buffer

See also: vips_image_new_from_buffer().

Parameters

	data
	start of
memory buffer.
	[array length=size][element-type guint8][transfer none]
	size
	number of bytes in data
.
	[type gsize]

Returns

the name of an operation on success, NULL on
error.

[transfer none]

vips_foreign_find_load_source ()

const char *
vips_foreign_find_load_source (VipsSource *source);

Searches for an operation you could use to load a source. To see the
range of source loaders supported by your vips, try something like:

	vips -l | grep load_source

See also: vips_image_new_from_source().

Parameters

	source
	source to load from
	

Returns

the name of an operation on success, NULL on
error.

[transfer none]

vips_foreign_flags ()

VipsForeignFlags
vips_foreign_flags (const char *loader,
 const char *filename);

Return the flags for filename
 using loader
.
loader
 is something like "tiffload" or "VipsForeignLoadTiff".

Parameters

	loader
	name of loader to use for test
	
	filename
	file to test
	

Returns

 the flags for filename
.

vips_foreign_is_a ()

gboolean
vips_foreign_is_a (const char *loader,
 const char *filename);

Return TRUE if filename
 can be loaded by loader
. loader
 is something
like "tiffload" or "VipsForeignLoadTiff".

Parameters

	loader
	name of loader to use for test
	
	filename
	file to test
	

Returns

 TRUE if filename
can be loaded by loader
.

vips_foreign_is_a_buffer ()

gboolean
vips_foreign_is_a_buffer (const char *loader,
 const void *data,
 size_t size);

Return TRUE if data
 can be loaded by loader
. loader
 is something
like "tiffload_buffer" or "VipsForeignLoadTiffBuffer".

Parameters

	loader
	name of loader to use for test
	
	data
	pointer to the buffer to test.
	[array length=size][element-type guint8]
	size
	size of the buffer to test.
	[type gsize]

Returns

 TRUE if data
can be loaded by loader
.

vips_foreign_is_a_source ()

gboolean
vips_foreign_is_a_source (const char *loader,
 VipsSource *source);

Return TRUE if source
 can be loaded by loader
. loader
 is something
like "tiffload_source" or "VipsForeignLoadTiffSource".

Parameters

	loader
	name of loader to use for test
	
	source
	source to test
	

Returns

 TRUE if data
can be loaded by source
.

vips_foreign_load_invalidate ()

void
vips_foreign_load_invalidate (VipsImage *image);

Loaders can call this on the image they are making if they see a read error
from the load library. It signals "invalidate" on the load operation and
will cause it to be dropped from cache.

If we know a file will cause a read error, we don't want to cache the
failing operation, we want to make sure the image will really be opened
again if our caller tries again. For example, a broken file might be
replaced by a working one.

[method]

Parameters

	image
	image to invalidate
	

vips_foreign_find_save ()

const char *
vips_foreign_find_save (const char *filename);

Searches for an operation you could use to write to filename
.
Any trailing options on filename
 are stripped and ignored.

See also: vips_foreign_find_save_buffer(), vips_image_write_to_file().

Parameters

	filename
	name to find a saver for
	

Returns

the name of an operation on success, NULL on error.

[nullable]

vips_foreign_get_suffixes ()

gchar **
vips_foreign_get_suffixes (void);

Get a NULL-terminated array listing all the supported suffixes.

This is not the same as all the supported file types, since libvips
detects image format for load by testing the first few bytes.

Use vips_foreign_find_load() to detect type for a specific file.

Free the return result with g_strfreev().

Returns

all supported file extensions, as a
NULL-terminated array.

[transfer full][array]

vips_foreign_find_save_buffer ()

const char *
vips_foreign_find_save_buffer (const char *suffix);

Searches for an operation you could use to write to a buffer in suffix

format.

See also: vips_image_write_to_buffer().

Parameters

	suffix
	name to find a saver for
	

Returns

the name of an operation on success, NULL on error.

[nullable]

vips_foreign_find_save_target ()

const char *
vips_foreign_find_save_target (const char *suffix);

Searches for an operation you could use to write to a target in suffix

format.

See also: vips_image_write_to_buffer().

Parameters

	suffix
	format to find a saver for
	

Returns

the name of an operation on success, NULL on error.

[nullable]

vips_vipsload ()

int
vips_vipsload (const char *filename,
 VipsImage **out,
 ...);

Read in a vips image.

See also: vips_vipssave().

Parameters

	filename
	file to load
	
	out
	decompressed image.
	[out]
	...
	NULL-terminated list of optional named arguments
	

Returns

 0 on success, -1 on error.

vips_vipsload_source ()

int
vips_vipsload_source (VipsSource *source,
 VipsImage **out,
 ...);

Exactly as vips_vipsload(), but read from a source.

Parameters

	source
	source to load from
	
	out
	decompressed image.
	[out]
	...
	NULL-terminated list of optional named arguments
	

Returns

 0 on success, -1 on error.

vips_vipssave ()

int
vips_vipssave (VipsImage *in,
 const char *filename,
 ...);

Write in
 to filename
 in VIPS format.

See also: vips_vipsload().

[method]

Parameters

	in
	image to save
	
	filename
	file to write to
	
	...
	NULL-terminated list of optional named arguments
	

Returns

 0 on success, -1 on error.

vips_vipssave_target ()

int
vips_vipssave_target (VipsImage *in,
 VipsTarget *target,
 ...);

As vips_vipssave(), but save to a target.

[method]

Parameters

	in
	image to save
	
	target
	save image to this target
	
	...
	NULL-terminated list of optional named arguments
	

Returns

 0 on success, -1 on error.

vips_openslideload ()

int
vips_openslideload (const char *filename,
 VipsImage **out,
 ...);

Optional arguments:

	level
: gint, load this level

	associated
: gchararray, load this associated image

	attach_associated
: gboolean, attach all associated images as metadata

	autocrop
: gboolean, crop to image bounds

	rgb
: gboolean, output RGB (not RGBA) pixels

Read a virtual slide supported by the OpenSlide library into a VIPS image.
OpenSlide supports images in Aperio, Hamamatsu, MIRAX, Sakura, Trestle,
and Ventana formats.

To facilitate zooming, virtual slide formats include multiple scaled-down
versions of the high-resolution image. These are typically called
"levels". By default, vips_openslideload() reads the highest-resolution
level (level 0). Set level
 to the level number you want.

In addition to the slide image itself, virtual slide formats sometimes
include additional images, such as a scan of the slide's barcode.
OpenSlide calls these "associated images". To read an associated image,
set associated
 to the image's name.
A slide's associated images are listed in the
"slide-associated-images" metadata item.

If you set attach_associated
, then all associated images are attached as
metadata items. Use vips_image_get_image() on out
 to retrieve them. Images
are attached as "openslide-associated-XXXXX", where XXXXX is the name of the
associated image.

By default, the output of this operator is RGBA. Set rgb
 to enable RGB
output.

See also: vips_image_new_from_file().

Parameters

	filename
	file to load
	
	out
	decompressed image.
	[out]
	...
	NULL-terminated list of optional named arguments
	

Returns

 0 on success, -1 on error.

vips_openslideload_source ()

int
vips_openslideload_source (VipsSource *source,
 VipsImage **out,
 ...);

Optional arguments:

	level
: gint, load this level

	associated
: gchararray, load this associated image

	attach_associated
: gboolean, attach all associated images as metadata

	autocrop
: gboolean, crop to image bounds

	rgb
: gboolean, output RGB (not RGBA) pixels

Exactly as vips_openslideload(), but read from a source.

Parameters

	source
	source to load from
	
	out
	decompressed image.
	[out]
	...
	NULL-terminated list of optional named arguments
	

Returns

 0 on success, -1 on error.

vips_jpegload ()

int
vips_jpegload (const char *filename,
 VipsImage **out,
 ...);

Optional arguments:

	shrink
: gint, shrink by this much on load

	fail_on
: VipsFailOn, types of read error to fail on

	autorotate
: gboolean, rotate image upright during load

Read a JPEG file into a VIPS image. It can read most 8-bit JPEG images,
including CMYK and YCbCr.

shrink
 means shrink by this integer factor during load. Possible values
are 1, 2, 4 and 8. Shrinking during read is very much faster than
decompressing the whole image and then shrinking later.

Use fail_on
 to set the type of error that will cause load to fail. By
default, loaders are permissive, that is, VIPS_FAIL_ON_NONE.

Setting autorotate
 to TRUE will make the loader interpret the
orientation tag and automatically rotate the image appropriately during
load.

If autorotate
 is FALSE, the metadata field VIPS_META_ORIENTATION is set
to the value of the orientation tag. Applications may read and interpret
this field
as they wish later in processing. See vips_autorot(). Save
operations will use VIPS_META_ORIENTATION, if present, to set the
orientation of output images.

Example:

 	1
2
3
4
	vips_jpegload("fred.jpg", &out,
 "shrink", 8,
 "fail_on", VIPS_FAIL_ON_TRUNCATED,
 NULL);

Any embedded ICC profiles are ignored: you always just get the RGB from
the file. Instead, the embedded profile will be attached to the image as
VIPS_META_ICC_NAME. You need to use something like
vips_icc_import() to get CIE values from the file.

EXIF metadata is attached as VIPS_META_EXIF_NAME, IPTC as
VIPS_META_IPTC_NAME, and XMP as VIPS_META_XMP_NAME.

The int metadata item "jpeg-multiscan" is set to the result of
jpeg_has_multiple_scans(). Interlaced jpeg images need a large amount of
memory to load, so this field gives callers a chance to handle these
images differently.

The string-valued field "jpeg-chroma-subsample" gives the chroma subsample
in standard notation. 4:4:4 means no subsample, 4:2:0 means YCbCr with
Cb and Cr subsampled horizontally and vertically, 4:4:4:4 means a CMYK
image with no subsampling.

The EXIF thumbnail, if present, is attached to the image as
"jpeg-thumbnail-data". See vips_image_get_blob().

See also: vips_jpegload_buffer(), vips_image_new_from_file(), vips_autorot().

Parameters

	filename
	file to load
	
	out
	decompressed image.
	[out]
	...
	NULL-terminated list of optional named arguments
	

Returns

 0 on success, -1 on error.

vips_jpegload_buffer ()

int
vips_jpegload_buffer (void *buf,
 size_t len,
 VipsImage **out,
 ...);

Optional arguments:

	shrink
: gint, shrink by this much on load

	fail_on
: VipsFailOn, types of read error to fail on

	autorotate
: gboolean, use exif Orientation tag to rotate the image
during load

Read a JPEG-formatted memory block into a VIPS image. Exactly as
vips_jpegload(), but read from a memory buffer.

You must not free the buffer while out
 is active. The
“postclose” signal on out
 is a good place to free.

See also: vips_jpegload().

Parameters

	buf
	memory area to load.
	[array length=len][element-type guint8]
	len
	size of memory area.
	[type gsize]
	out
	image to write.
	[out]
	...
	NULL-terminated list of optional named arguments
	

Returns

 0 on success, -1 on error.

vips_jpegload_source ()

int
vips_jpegload_source (VipsSource *source,
 VipsImage **out,
 ...);

Optional arguments:

	shrink
: gint, shrink by this much on load

	fail_on
: VipsFailOn, types of read error to fail on

	autorotate
: gboolean, use exif Orientation tag to rotate the image
during load

Read a JPEG-formatted memory block into a VIPS image. Exactly as
vips_jpegload(), but read from a source.

See also: vips_jpegload().

Parameters

	source
	source to load
	
	out
	image to write.
	[out]
	...
	NULL-terminated list of optional named arguments
	

Returns

 0 on success, -1 on error.

vips_jpegsave_target ()

int
vips_jpegsave_target (VipsImage *in,
 VipsTarget *target,
 ...);

Optional arguments:

	Q
: gint, quality factor

	optimize_coding
: gboolean, compute optimal Huffman coding tables

	interlace
: gboolean, write an interlaced (progressive) jpeg

	subsample_mode
: VipsForeignSubsample, chroma subsampling mode

	trellis_quant
: gboolean, apply trellis quantisation to each 8x8 block

	overshoot_deringing
: gboolean, overshoot samples with extreme values

	optimize_scans
: gboolean, split DCT coefficients into separate scans

	quant_table
: gint, quantization table index

	restart_interval
: gint, restart interval in mcu

As vips_jpegsave(), but save to a target.

See also: vips_jpegsave(), vips_image_write_to_target().

[method]

Parameters

	in
	image to save
	
	target
	save image to this target
	
	...
	NULL-terminated list of optional named arguments
	

Returns

 0 on success, -1 on error.

vips_jpegsave ()

int
vips_jpegsave (VipsImage *in,
 const char *filename,
 ...);

Optional arguments:

	Q
: gint, quality factor

	optimize_coding
: gboolean, compute optimal Huffman coding tables

	interlace
: gboolean, write an interlaced (progressive) jpeg

	subsample_mode
: VipsForeignSubsample, chroma subsampling mode

	trellis_quant
: gboolean, apply trellis quantisation to each 8x8 block

	overshoot_deringing
: gboolean, overshoot samples with extreme values

	optimize_scans
: gboolean, split DCT coefficients into separate scans

	quant_table
: gint, quantization table index

	restart_interval
: gint, restart interval in mcu

Write a VIPS image to a file as JPEG.

Use Q
 to set the JPEG compression factor. Default 75.

If optimize_coding
 is set, the Huffman tables are optimized. This is
slightly slower and produces slightly smaller files.

If interlace
 is set, the jpeg files will be interlaced (progressive jpeg,
in jpg parlance). These files may be better for display over a slow network
connection, but need much more memory to encode and decode.

Chroma subsampling is normally automatically disabled for Q >= 90. You can
force the subsampling mode with subsample_mode
.

If trellis_quant
 is set and the version of libjpeg supports it
(e.g. mozjpeg >= 3.0), apply trellis quantisation to each 8x8 block.
Reduces file size but increases compression time.

If overshoot_deringing
 is set and the version of libjpeg supports it
(e.g. mozjpeg >= 3.0), apply overshooting to samples with extreme values
for example 0 and 255 for 8-bit. Overshooting may reduce ringing artifacts
from compression, in particular in areas where black text appears on a
white background.

If optimize_scans
 is set and the version of libjpeg supports it
(e.g. mozjpeg >= 3.0), split the spectrum of DCT coefficients into
separate scans. Reduces file size but increases compression time.

If quant_table
 is set and the version of libjpeg supports it
(e.g. mozjpeg >= 3.0) it selects the quantization table to use:

	0 — Tables from JPEG Annex K (vips and libjpeg default)

	1 — Flat table

	2 — Table tuned for MSSIM on Kodak image set

	3 — Table from ImageMagick by N. Robidoux (current mozjpeg default)

	4 — Table tuned for PSNR-HVS-M on Kodak image set

	5 — Table from Relevance of Human Vision to JPEG-DCT Compression (1992)

	6 — Table from DCTune Perceptual Optimization of Compressed Dental
X-Rays (1997)

	7 — Table from A Visual Detection Model for DCT Coefficient
Quantization (1993)

	8 — Table from An Improved Detection Model for DCT Coefficient
Quantization (1993)

Quantization table 0 is the default in vips and libjpeg(-turbo), but it
tends to favor detail over color accuracy, producing colored patches and
stripes as well as heavy banding in flat areas at high compression ratios.
Quantization table 2 is a good candidate to try if the default quantization
table produces banding or color shifts and is well suited for hires images.
Quantization table 3 is the default in mozjpeg and has been tuned to produce
good results at the default quality setting; banding at high compression.
Quantization table 4 is the most accurate at the cost of compression ratio.
Tables 5-7 are based on older research papers, but generally achieve worse
compression ratios and/or quality than 2 or 4.

For maximum compression with mozjpeg, a useful set of options is strip,
optimize-coding, interlace, optimize-scans, trellis-quant, quant_table=3.

By default, the output stream won't have restart markers. If a non-zero
restart_interval is specified, a restart marker will be added after each
specified number of MCU blocks. This makes the stream more recoverable
if there are transmission errors, but also allows for some decoders to read
part of the JPEG without decoding the whole stream.

The image is automatically converted to RGB, Monochrome or CMYK before
saving.

EXIF data is constructed from VIPS_META_EXIF_NAME, then
modified with any other related tags on the image before being written to
the file. VIPS_META_RESOLUTION_UNIT is used to set the EXIF resolution
unit. VIPS_META_ORIENTATION is used to set the EXIF orientation tag.

IPTC as VIPS_META_IPTC_NAME and XMP as VIPS_META_XMP_NAME
are coded and attached.

See also: vips_jpegsave_buffer(), vips_image_write_to_file().

[method]

Parameters

	in
	image to save
	
	filename
	file to write to
	
	...
	NULL-terminated list of optional named arguments
	

Returns

 0 on success, -1 on error.

vips_jpegsave_buffer ()

int
vips_jpegsave_buffer (VipsImage *in,
 void **buf,
 size_t *len,
 ...);

Optional arguments:

	Q
: gint, quality factor

	optimize_coding
: gboolean, compute optimal Huffman coding tables

	interlace
: gboolean, write an interlaced (progressive) jpeg

	subsample_mode
: VipsForeignSubsample, chroma subsampling mode

	trellis_quant
: gboolean, apply trellis quantisation to each 8x8 block

	overshoot_deringing
: gboolean, overshoot samples with extreme values

	optimize_scans
: gboolean, split DCT coefficients into separate scans

	quant_table
: gint, quantization table index

	restart_interval
: gint, restart interval in mcu

As vips_jpegsave(), but save to a memory buffer.

The address of the buffer is returned in obuf
, the length of the buffer in
olen
. You are responsible for freeing the buffer with g_free() when you
are done with it.

See also: vips_jpegsave(), vips_image_write_to_file().

[method]

Parameters

	in
	image to save
	
	buf
	return output buffer here.
	[array length=len][element-type guint8]
	len
	return output length here.
	[type gsize]
	...
	NULL-terminated list of optional named arguments
	

Returns

 0 on success, -1 on error.

vips_jpegsave_mime ()

int
vips_jpegsave_mime (VipsImage *in,
 ...);

Optional arguments:

	Q
: gint, quality factor

	optimize_coding
: gboolean, compute optimal Huffman coding tables

	interlace
: gboolean, write an interlaced (progressive) jpeg

	subsample_mode
: VipsForeignSubsample, chroma subsampling mode

	trellis_quant
: gboolean, apply trellis quantisation to each 8x8 block

	overshoot_deringing
: gboolean, overshoot samples with extreme values

	optimize_scans
: gboolean, split DCT coefficients into separate scans

	quant_table
: gint, quantization table index

	restart_interval
: gint, restart interval in mcu

As vips_jpegsave(), but save as a mime jpeg on stdout.

See also: vips_jpegsave(), vips_image_write_to_file().

[method]

Parameters

	in
	image to save
	
	...
	NULL-terminated list of optional named arguments
	

Returns

 0 on success, -1 on error.

vips_webpload_source ()

int
vips_webpload_source (VipsSource *source,
 VipsImage **out,
 ...);

Optional arguments:

	page
: gint, page (frame) to read

	n
: gint, load this many pages

	scale
: gdouble, scale by this much on load

Exactly as vips_webpload(), but read from a source.

See also: vips_webpload()

Parameters

	source
	source to load from
	
	out
	image to write.
	[out]
	...
	NULL-terminated list of optional named arguments
	

Returns

 0 on success, -1 on error.

vips_webpload ()

int
vips_webpload (const char *filename,
 VipsImage **out,
 ...);

Optional arguments:

	page
: gint, page (frame) to read

	n
: gint, load this many pages

	scale
: gdouble, scale by this much on load

Read a WebP file into a VIPS image.

Use page
 to select a page to render, numbering from zero.

Use n
 to select the number of pages to render. The default is 1. Pages are
rendered in a vertical column, with each individual page aligned to the
left. Set to -1 to mean "until the end of the document". Use vips_grid()
to change page layout.

Use scale
 to specify a scale-on-load factor. For example, 2.0 to double
the size on load. Animated webp images don't support shrink-on-load, so a
further resize may be necessary.

The loader supports ICC, EXIF and XMP metadata.

See also: vips_image_new_from_file().

Parameters

	filename
	file to load
	
	out
	decompressed image.
	[out]
	...
	NULL-terminated list of optional named arguments
	

Returns

 0 on success, -1 on error.

vips_webpload_buffer ()

int
vips_webpload_buffer (void *buf,
 size_t len,
 VipsImage **out,
 ...);

Optional arguments:

	page
: gint, page (frame) to read

	n
: gint, load this many pages

	scale
: gdouble, scale by this much on load

Read a WebP-formatted memory block into a VIPS image. Exactly as
vips_webpload(), but read from a memory buffer.

You must not free the buffer while out
 is active. The
“postclose” signal on out
 is a good place to free.

See also: vips_webpload()

Parameters

	buf
	memory area to load.
	[array length=len][element-type guint8]
	len
	size of memory area.
	[type gsize]
	out
	image to write.
	[out]
	...
	NULL-terminated list of optional named arguments
	

Returns

 0 on success, -1 on error.

vips_webpsave_target ()

int
vips_webpsave_target (VipsImage *in,
 VipsTarget *target,
 ...);

Optional arguments:

	Q
: gint, quality factor

	lossless
: gboolean, enables lossless compression

	preset
: VipsForeignWebpPreset, choose lossy compression preset

	smart_subsample
: gboolean, enables high quality chroma subsampling

	near_lossless
: gboolean, preprocess in lossless mode (controlled by Q)

	alpha_q
: gint, set alpha quality in lossless mode

	effort
: gint, level of CPU effort to reduce file size

	min_size
: gboolean, minimise size

	mixed
: gboolean, allow both lossy and lossless encoding

	kmin
: gint, minimum number of frames between keyframes

	kmax
: gint, maximum number of frames between keyframes

As vips_webpsave(), but save to a target.

See also: vips_webpsave().

[method]

Parameters

	in
	image to save
	
	target
	save image to this target
	
	...
	NULL-terminated list of optional named arguments
	

Returns

 0 on success, -1 on error.

vips_webpsave ()

int
vips_webpsave (VipsImage *in,
 const char *filename,
 ...);

Optional arguments:

	Q
: gint, quality factor

	lossless
: gboolean, enables lossless compression

	preset
: VipsForeignWebpPreset, choose lossy compression preset

	smart_subsample
: gboolean, enables high quality chroma subsampling

	near_lossless
: gboolean, preprocess in lossless mode (controlled by Q)

	alpha_q
: gint, set alpha quality in lossless mode

	effort
: gint, level of CPU effort to reduce file size

	min_size
: gboolean, minimise size

	mixed
: gboolean, allow both lossy and lossless encoding

	kmin
: gint, minimum number of frames between keyframes

	kmax
: gint, maximum number of frames between keyframes

Write an image to a file in WebP format.

By default, images are saved in lossy format, with
Q
 giving the WebP quality factor. It has the range 0 - 100, with the
default 75.

Use preset
 to hint the image type to the lossy compressor. The default is
VIPS_FOREIGN_WEBP_PRESET_DEFAULT.

Set smart_subsample
 to enable high quality chroma subsampling.

Use alpha_q
 to set the quality for the alpha channel in lossy mode. It has
the range 1 - 100, with the default 100.

Use effort
 to control how much CPU time to spend attempting to
reduce file size. A higher value means more effort and therefore CPU time
should be spent. It has the range 0-6 and a default value of 4.

Set lossless
 to use lossless compression, or combine near_lossless

with Q
 80, 60, 40 or 20 to apply increasing amounts of preprocessing
which improves the near-lossless compression ratio by up to 50%.

For animated webp output, min_size
 will try to optimize for minimum size.

For animated webp output, kmax
 sets the maximum number of frames between
keyframes. Setting 0 means only keyframes. kmin
 sets the minimum number of
frames between frames. Setting 0 means no keyframes. By default, keyframes
are disabled.

For animated webp output, mixed
 tries to improve the file size by mixing
both lossy and lossless encoding.

Use the metadata items loop and delay to set the number of
loops for the animation and the frame delays.

See also: vips_webpload(), vips_image_write_to_file().

[method]

Parameters

	in
	image to save
	
	filename
	file to write to
	
	...
	NULL-terminated list of optional named arguments
	

Returns

 0 on success, -1 on error.

vips_webpsave_buffer ()

int
vips_webpsave_buffer (VipsImage *in,
 void **buf,
 size_t *len,
 ...);

Optional arguments:

	Q
: gint, quality factor

	lossless
: gboolean, enables lossless compression

	preset
: VipsForeignWebpPreset, choose lossy compression preset

	smart_subsample
: gboolean, enables high quality chroma subsampling

	near_lossless
: gboolean, preprocess in lossless mode (controlled by Q)

	alpha_q
: gint, set alpha quality in lossless mode

	effort
: gint, level of CPU effort to reduce file size

	min_size
: gboolean, minimise size

	mixed
: gboolean, allow both lossy and lossless encoding

	kmin
: gint, minimum number of frames between keyframes

	kmax
: gint, maximum number of frames between keyframes

As vips_webpsave(), but save to a memory buffer.

The address of the buffer is returned in buf
, the length of the buffer in
len
. You are responsible for freeing the buffer with g_free() when you
are done with it.

See also: vips_webpsave().

[method]

Parameters

	in
	image to save
	
	buf
	return output buffer here.
	[out][array length=len][element-type guint8]
	len
	return output length here
	
	...
	NULL-terminated list of optional named arguments
	

Returns

 0 on success, -1 on error.

vips_webpsave_mime ()

int
vips_webpsave_mime (VipsImage *in,
 ...);

Optional arguments:

	Q
: gint, quality factor

	lossless
: gboolean, enables lossless compression

	preset
: VipsForeignWebpPreset, choose lossy compression preset

	smart_subsample
: gboolean, enables high quality chroma subsampling

	near_lossless
: gboolean, preprocess in lossless mode (controlled by Q)

	alpha_q
: gint, set alpha quality in lossless mode

	effort
: gint, level of CPU effort to reduce file size

	min_size
: gboolean, minimise size

	mixed
: gboolean, allow both lossy and lossless encoding

	kmin
: gint, minimum number of frames between keyframes

	kmax
: gint, maximum number of frames between keyframes

As vips_webpsave(), but save as a mime webp on stdout.

See also: vips_webpsave(), vips_image_write_to_file().

[method]

Parameters

	in
	image to save
	
	...
	NULL-terminated list of optional named arguments
	

Returns

 0 on success, -1 on error.

vips_tiffload ()

int
vips_tiffload (const char *filename,
 VipsImage **out,
 ...);

Optional arguments:

	page
: gint, load this page

	n
: gint, load this many pages

	autorotate
: gboolean, use orientation tag to rotate the image
during load

	subifd
: gint, select this subifd index

Read a TIFF file into a VIPS image. It is a full baseline TIFF 6 reader,
with extensions for tiled images, multipage images, XYZ and LAB colour
space, pyramidal images and JPEG compression, including CMYK and YCbCr.

page
 means load this page from the file. By default the first page (page
0) is read.

n
 means load this many pages. By default a single page is read. All the
pages must have the same dimensions, and they are loaded as a tall, thin
"toilet roll" image. The VIPS_META_PAGE_HEIGHT metadata
tag gives the height in pixels of each page. Use -1 to load all pages.

Setting autorotate
 to TRUE will make the loader interpret the
orientation tag and automatically rotate the image appropriately during
load.

If autorotate
 is FALSE, the metadata field VIPS_META_ORIENTATION is set
to the value of the orientation tag. Applications may read and interpret
this field
as they wish later in processing. See vips_autorot(). Save
operations will use VIPS_META_ORIENTATION, if present, to set the
orientation of output images.

If autorotate
 is TRUE, the image will be rotated upright during load and
no metadata attached. This can be very slow.

If subifd
 is -1 (the default), the main image is selected for each page.
If it is 0 or greater and there is a SUBIFD tag, the indexed SUBIFD is
selected. This can be used to read lower resolution layers from
bioformats-style image pyramids.

Any ICC profile is read and attached to the VIPS image as
VIPS_META_ICC_NAME. Any XMP metadata is read and attached to the image
as VIPS_META_XMP_NAME. Any IPTC is attached as VIPS_META_IPTC_NAME. The
image description is
attached as VIPS_META_IMAGEDESCRIPTION. Data in the photoshop tag is
attached as VIPS_META_PHOTOSHOP_NAME.

See also: vips_image_new_from_file(), vips_autorot().

Parameters

	filename
	file to load
	
	out
	decompressed image.
	[out]
	...
	NULL-terminated list of optional named arguments
	

Returns

 0 on success, -1 on error.

vips_tiffload_buffer ()

int
vips_tiffload_buffer (void *buf,
 size_t len,
 VipsImage **out,
 ...);

Optional arguments:

	page
: gint, load this page

	n
: gint, load this many pages

	autorotate
: gboolean, use orientation tag to rotate the image
during load

	subifd
: gint, select this subifd index

Read a TIFF-formatted memory block into a VIPS image. Exactly as
vips_tiffload(), but read from a memory source.

You must not free the buffer while out
 is active. The
“postclose” signal on out
 is a good place to free.

See also: vips_tiffload().

Parameters

	buf
	memory area to load.
	[array length=len][element-type guint8]
	len
	size of memory area.
	[type gsize]
	out
	image to write.
	[out]
	...
	NULL-terminated list of optional named arguments
	

Returns

 0 on success, -1 on error.

vips_tiffload_source ()

int
vips_tiffload_source (VipsSource *source,
 VipsImage **out,
 ...);

Optional arguments:

	page
: gint, load this page

	n
: gint, load this many pages

	autorotate
: gboolean, use orientation tag to rotate the image
during load

	subifd
: gint, select this subifd index

Exactly as vips_tiffload(), but read from a source.

See also: vips_tiffload().

Parameters

	source
	source to load
	
	out
	image to write.
	[out]
	...
	NULL-terminated list of optional named arguments
	

Returns

 0 on success, -1 on error.

vips_tiffsave ()

int
vips_tiffsave (VipsImage *in,
 const char *filename,
 ...);

Optional arguments:

	compression
: use this VipsForeignTiffCompression

	Q
: gint quality factor

	predictor
: use this VipsForeignTiffPredictor

	tile
: gboolean, set TRUE to write a tiled tiff

	tile_width
: gint for tile size

	tile_height
: gint for tile size

	pyramid
: gboolean, write an image pyramid

	bitdepth
: int, change bit depth to 1,2, or 4 bit

	miniswhite
: gboolean, write 1-bit images as MINISWHITE

	resunit
: VipsForeignTiffResunit for resolution unit

	xres
: gdouble horizontal resolution in pixels/mm

	yres
: gdouble vertical resolution in pixels/mm

	bigtiff
: gboolean, write a BigTiff file

	properties
: gboolean, set TRUE to write an IMAGEDESCRIPTION tag

	region_shrink
: VipsRegionShrink How to shrink each 2x2 region.

	level
: gint, Zstd compression level

	lossless
: gboolean, WebP lossless mode

	depth
: VipsForeignDzDepth how deep to make the pyramid

	subifd
: gboolean write pyr layers as sub-ifds

	premultiply
: gboolean write premultiplied alpha

Write a VIPS image to a file as TIFF.

If in
 has the VIPS_META_PAGE_HEIGHT metadata item, this is assumed to be a
"toilet roll" image. It will be
written as series of pages, each VIPS_META_PAGE_HEIGHT pixels high.

Use compression
 to set the tiff compression. Currently jpeg, packbits,
fax4, lzw, none, deflate, webp and zstd are supported. The default is no
compression.
JPEG compression is a good lossy compressor for photographs, packbits is
good for 1-bit images, and deflate is the best lossless compression TIFF
can do.

XYZ images are automatically saved as libtiff LOGLUV with SGILOG compression.
Float LAB images are saved as float CIELAB. Set bitdepth
 to save as 8-bit
CIELAB.

Use Q
 to set the JPEG compression factor. Default 75.

User level
 to set the ZSTD compression level. Use lossless
 to
set WEBP lossless mode on. Use Q
 to set the WEBP compression level.

Use predictor
 to set the predictor for lzw, deflate and zstd compression.
It defaults to VIPS_FOREIGN_TIFF_PREDICTOR_HORIZONTAL, meaning horizontal
differencing. Please refer to the libtiff
specifications for further discussion of various predictors.

Set tile
 to TRUE to write a tiled tiff. By default tiff are written in
strips. Use tile_width
 and tile_height
 to set the tile size. The defaiult
is 128 by 128.

Set pyramid
 to write the image as a set of images, one per page, of
decreasing size. Use region_shrink
 to set how images will be shrunk: by
default each 2x2 block is just averaged, but you can set MODE or MEDIAN as
well.

By default, the pyramid stops when the image is small enough to fit in one
tile. Use depth
 to stop when the image fits in one pixel, or to only write
a single layer.

Set bitdepth
 to save 8-bit uchar images as 1, 2 or 4-bit TIFFs.
In case of depth 1: Values >128 are written as white, values <=128 as black.
Normally vips will write MINISBLACK TIFFs where black is a 0 bit, but if you
set miniswhite
, it will use 0 for a white bit. Many pre-press applications
only work with images which use this sense. miniswhite
 only affects one-bit
images, it does nothing for greyscale images.
In case of depth 2: The same holds but values < 64 are written as black.
For 64 <= values < 128 they are written as dark grey, for 128 <= values < 192
they are written as light gray and values above are written as white.
In case miniswhite
 is set to true this behavior is inverted.
In case of depth 4: values < 16 are written as black, and so on for the
lighter shades. In case miniswhite
 is set to true this behavior is inverted.

Use resunit
 to override the default resolution unit.
The default
resolution unit is taken from the header field
VIPS_META_RESOLUTION_UNIT. If this field is not set, then
VIPS defaults to cm.

Use xres
 and yres
 to override the default horizontal and vertical
resolutions. By default these values are taken from the VIPS image header.
libvips resolution is always in pixels per millimetre.

Set bigtiff
 to attempt to write a bigtiff. Bigtiff is a variant of the TIFF
format that allows more than 4GB in a file.

Set properties
 to write all vips metadata to the IMAGEDESCRIPTION tag as
xml. If properties
 is not set, the value of VIPS_META_IMAGEDESCRIPTION is
used instead.

The value of VIPS_META_XMP_NAME is written to
the XMP tag. VIPS_META_ORIENTATION (if set) is used to set the value of
the orientation
tag. VIPS_META_IPTC (if set) is used to set the value of the IPTC tag.
VIPS_META_PHOTOSHOP_NAME (if set) is used to set the value of the PHOTOSHOP
tag.

By default, pyramid layers are saved as consecutive pages.
Set subifd
 to save pyramid layers as sub-directories of the main image.
Setting this option can improve compatibility with formats like OME.

Set premultiply
 to save with premultiplied alpha. Some programs, such as
InDesign, will only work with premultiplied alpha.

See also: vips_tiffload(), vips_image_write_to_file().

[method]

Parameters

	in
	image to save
	
	filename
	file to write to
	
	...
	NULL-terminated list of optional named arguments
	

Returns

 0 on success, -1 on error.

vips_tiffsave_buffer ()

int
vips_tiffsave_buffer (VipsImage *in,
 void **buf,
 size_t *len,
 ...);

Optional arguments:

	compression
: use this VipsForeignTiffCompression

	Q
: gint quality factor

	predictor
: use this VipsForeignTiffPredictor

	tile
: gboolean, set TRUE to write a tiled tiff

	tile_width
: gint for tile size

	tile_height
: gint for tile size

	pyramid
: gboolean, write an image pyramid

	bitdepth
: int, set write bit depth to 1, 2, 4 or 8

	miniswhite
: gboolean, write 1-bit images as MINISWHITE

	resunit
: VipsForeignTiffResunit for resolution unit

	xres
: gdouble horizontal resolution in pixels/mm

	yres
: gdouble vertical resolution in pixels/mm

	bigtiff
: gboolean, write a BigTiff file

	properties
: gboolean, set TRUE to write an IMAGEDESCRIPTION tag

	region_shrink
: VipsRegionShrink How to shrink each 2x2 region.

	level
: gint, Zstd compression level

	lossless
: gboolean, WebP lossless mode

	depth
: VipsForeignDzDepth how deep to make the pyramid

	subifd
: gboolean write pyr layers as sub-ifds

	premultiply
: gboolean write premultiplied alpha

As vips_tiffsave(), but save to a memory buffer.

The address of the buffer is returned in buf
, the length of the buffer in
len
. You are responsible for freeing the buffer with g_free() when you
are done with it.

See also: vips_tiffsave(), vips_image_write_to_file().

[method]

Parameters

	in
	image to save
	
	buf
	return output buffer here.
	[array length=len][element-type guint8]
	len
	return output length here.
	[type gsize]
	...
	NULL-terminated list of optional named arguments
	

Returns

 0 on success, -1 on error.

vips_tiffsave_target ()

int
vips_tiffsave_target (VipsImage *in,
 VipsTarget *target,
 ...);

Optional arguments:

	compression
: use this VipsForeignTiffCompression

	Q
: gint quality factor

	predictor
: use this VipsForeignTiffPredictor

	tile
: gboolean, set TRUE to write a tiled tiff

	tile_width
: gint for tile size

	tile_height
: gint for tile size

	pyramid
: gboolean, write an image pyramid

	bitdepth
: int, set write bit depth to 1, 2, 4 or 8

	miniswhite
: gboolean, write 1-bit images as MINISWHITE

	resunit
: VipsForeignTiffResunit for resolution unit

	xres
: gdouble horizontal resolution in pixels/mm

	yres
: gdouble vertical resolution in pixels/mm

	bigtiff
: gboolean, write a BigTiff file

	properties
: gboolean, set TRUE to write an IMAGEDESCRIPTION tag

	region_shrink
: VipsRegionShrink How to shrink each 2x2 region.

	level
: gint, Zstd compression level

	lossless
: gboolean, WebP lossless mode

	depth
: VipsForeignDzDepth how deep to make the pyramid

	subifd
: gboolean write pyr layers as sub-ifds

	premultiply
: gboolean write premultiplied alpha

As vips_tiffsave(), but save to a target.

See also: vips_tiffsave(), vips_image_write_to_target().

[method]

Parameters

	in
	image to save
	
	target
	save image to this target
	
	...
	NULL-terminated list of optional named arguments
	

Returns

 0 on success, -1 on error.

vips_openexrload ()

int
vips_openexrload (const char *filename,
 VipsImage **out,
 ...);

Read a OpenEXR file into a VIPS image.

The reader can handle scanline and tiled OpenEXR images. It can't handle
OpenEXR colour management, image attributes, many pixel formats, anything
other than RGBA.

This reader uses the rather limited OpenEXR C API. It should really be
redone in C++.

See also: vips_image_new_from_file().

Parameters

	filename
	file to load
	
	out
	decompressed image.
	[out]
	...
	NULL-terminated list of optional named arguments
	

Returns

 0 on success, -1 on error.

vips_fitsload ()

int
vips_fitsload (const char *filename,
 VipsImage **out,
 ...);

Read a FITS image file into a VIPS image.

This operation can read images with up to three dimensions. Any higher
dimensions must be empty.

It can read 8, 16 and 32-bit integer images, signed and unsigned, float and
double.

FITS metadata is attached with the "fits-" prefix.

See also: vips_image_new_from_file().

Parameters

	filename
	file to load
	
	out
	decompressed image.
	[out]
	...
	NULL-terminated list of optional named arguments
	

Returns

 0 on success, -1 on error.

vips_fitssave ()

int
vips_fitssave (VipsImage *in,
 const char *filename,
 ...);

Write a VIPS image to a file in FITS format.

See also: vips_image_write_to_file().

[method]

Parameters

	in
	image to save
	
	filename
	file to write to
	
	...
	NULL-terminated list of optional named arguments
	

Returns

 0 on success, -1 on error.

vips_analyzeload ()

int
vips_analyzeload (const char *filename,
 VipsImage **out,
 ...);

Load an Analyze 6.0 file. If filename
 is "fred.img", this will look for
an image header called "fred.hdr" and pixel data in "fred.img". You can
also load "fred" or "fred.hdr".

Images are
loaded lazilly and byte-swapped, if necessary. The Analyze metadata is read
and attached.

See also: vips_image_new_from_file().

Parameters

	filename
	file to load
	
	out
	decompressed image.
	[out]
	...
	NULL-terminated list of optional named arguments
	

Returns

 0 on success, -1 on error.

vips_rawload ()

int
vips_rawload (const char *filename,
 VipsImage **out,
 int width,
 int height,
 int bands,
 ...);

Optional arguments:

	offset
: guint64, offset in bytes from start of file

	format
: VipsBandFormat, set image format

	interpretation
: VipsInterpretation, set image interpretation

This operation mmaps the file, setting up out
 so that access to that
image will read from the file.

By default, it assumes uchar pixels. Use format
 to select something else.

The image will be tagged as VIPS_INTERPRETATION_MULTIBAND. Use
interpretation
 to select something else.

Use vips_byteswap() to reverse the byte ordering if necessary.

See also: vips_image_new_from_file(), vips_copy(), vips_byteswap().

Parameters

	filename
	file to load
	
	out
	output image.
	[out]
	width
	width of image in pixels
	
	height
	height of image in pixels
	
	bands
	number of image bands
	
	...
	NULL-terminated list of optional named arguments
	

Returns

 0 on success, -1 on error.

vips_rawsave ()

int
vips_rawsave (VipsImage *in,
 const char *filename,
 ...);

Writes the pixels in in
 to the file filename
 with no header or other
metadata.

See also: vips_image_write_to_file().

[method]

Parameters

	in
	image to save
	
	filename
	file to write to
	
	...
	NULL-terminated list of optional named arguments
	

Returns

 0 on success, -1 on error.

vips_rawsave_fd ()

int
vips_rawsave_fd (VipsImage *in,
 int fd,
 ...);

Writes the pixels in in
 to the fd
 with no header or other
metadata. Handy for implementing other savers.

See also: vips_rawsave().

[method]

Parameters

	in
	image to save
	
	fd
	file to write to
	
	...
	NULL-terminated list of optional named arguments
	

Returns

 0 on success, -1 on error.

vips_csvload ()

int
vips_csvload (const char *filename,
 VipsImage **out,
 ...);

Optional arguments:

	skip
: skip this many lines at start of file

	lines
: read this many lines from file

	whitespace
: set of whitespace characters

	separator
: set of separator characters

	fail_on
: VipsFailOn, types of read error to fail on

Load a CSV (comma-separated values) file. The output image is always 1
band (monochrome), VIPS_FORMAT_DOUBLE. Use vips_bandfold() to turn
RGBRGBRGB mono images into colour images.

Items in lines can be either floating point numbers in the C locale, or
strings enclosed in double-quotes ("), or empty.
You can use a backslash() within the quotes to escape special characters,
such as quote marks.

skip
 sets the number of lines to skip at the start of the file.
Default zero.

lines
 sets the number of lines to read from the file. Default -1,
meaning read all lines to end of file.

whitespace
 sets the skippable whitespace characters.
Default <emphasis>space</emphasis>.
Whitespace characters are always run together.

separator
 sets the characters that separate fields.
Default ;,<emphasis>tab</emphasis>. Separators are never run together.

Use fail_on
 to set the type of error that will cause load to fail. By
default, loaders are permissive, that is, VIPS_FAIL_ON_NONE.

See also: vips_image_new_from_file(), vips_bandfold().

Parameters

	filename
	file to load
	
	out
	output image.
	[out]
	...
	NULL-terminated list of optional named arguments
	

Returns

 0 on success, -1 on error.

vips_csvload_source ()

int
vips_csvload_source (VipsSource *source,
 VipsImage **out,
 ...);

Optional arguments:

	skip
: skip this many lines at start of file

	lines
: read this many lines from file

	whitespace
: set of whitespace characters

	separator
: set of separator characters

	fail_on
: VipsFailOn, types of read error to fail on

Exactly as vips_csvload(), but read from a source.

See also: vips_csvload().

Parameters

	source
	source to load
	
	out
	output image.
	[out]
	...
	NULL-terminated list of optional named arguments
	

Returns

 0 on success, -1 on error.

vips_csvsave ()

int
vips_csvsave (VipsImage *in,
 const char *filename,
 ...);

Optional arguments:

	separator
: separator string

Writes the pixels in in
 to the filename
 as CSV (comma-separated values).
The image is written
one line of text per scanline. Complex numbers are written as
"(real,imaginary)" and will need extra parsing I guess. Only the first band
is written.

separator
 gives the string to use to separate numbers in the output.
The default is "\t" (tab).

See also: vips_image_write_to_file().

[method]

Parameters

	in
	image to save
	
	filename
	file to write to
	
	...
	NULL-terminated list of optional named arguments
	

Returns

 0 on success, -1 on error.

vips_csvsave_target ()

int
vips_csvsave_target (VipsImage *in,
 VipsTarget *target,
 ...);

Optional arguments:

	separator
: separator string

As vips_csvsave(), but save to a target.

See also: vips_csvsave().

[method]

Parameters

	in
	image to save
	
	target
	save image to this target
	
	...
	NULL-terminated list of optional named arguments
	

Returns

 0 on success, -1 on error.

vips_matrixload ()

int
vips_matrixload (const char *filename,
 VipsImage **out,
 ...);

Reads a matrix from a file.

Matrix files have a simple format that's supposed to be easy to create with
a text editor or a spreadsheet.

The first line has four numbers for width, height, scale and
offset (scale and offset may be omitted, in which case they default to 1.0
and 0.0). Scale must be non-zero. Width and height must be positive
integers. The numbers are separated by any mixture of spaces, commas,
tabs and quotation marks ("). The scale and offset fields may be
floating-point, and must use '.'
as a decimal separator.

Subsequent lines each hold one row of matrix data, with numbers again
separated by any mixture of spaces, commas,
tabs and quotation marks ("). The numbers may be floating-point, and must
use '.'
as a decimal separator.

Extra characters at the ends of lines or at the end of the file are
ignored.

See also: vips_matrixload().

Parameters

	filename
	file to load
	
	out
	output image.
	[out]
	...
	NULL-terminated list of optional named arguments
	

Returns

 0 on success, -1 on error.

vips_matrixload_source ()

int
vips_matrixload_source (VipsSource *source,
 VipsImage **out,
 ...);

Exactly as vips_matrixload(), but read from a source.

See also: vips_matrixload().

Parameters

	source
	source to load
	
	out
	output image.
	[out]
	...
	NULL-terminated list of optional named arguments
	

Returns

 0 on success, -1 on error.

vips_matrixsave ()

int
vips_matrixsave (VipsImage *in,
 const char *filename,
 ...);

Write in
 to filename
 in matrix format. See vips_matrixload() for a
description of the format.

See also: vips_matrixload().

[method]

Parameters

	in
	image to save
	
	filename
	file to write to
	
	...
	NULL-terminated list of optional named arguments
	

Returns

 0 on success, -1 on error.

vips_matrixsave_target ()

int
vips_matrixsave_target (VipsImage *in,
 VipsTarget *target,
 ...);

As vips_matrixsave(), but save to a target.

See also: vips_matrixsave().

[method]

Parameters

	in
	image to save
	
	target
	save image to this target
	
	...
	NULL-terminated list of optional named arguments
	

Returns

 0 on success, -1 on error.

vips_matrixprint ()

int
vips_matrixprint (VipsImage *in,
 ...);

Print in
 to stdout in matrix format. See vips_matrixload() for a
description of the format.

See also: vips_matrixload().

[method]

Parameters

	in
	image to print
	
	...
	NULL-terminated list of optional named arguments
	

Returns

 0 on success, -1 on error.

vips_magickload ()

int
vips_magickload (const char *filename,
 VipsImage **out,
 ...);

Optional arguments:

	page
: gint, load from this page

	n
: gint, load this many pages

	density
: string, canvas resolution for rendering vector formats like SVG

Read in an image using libMagick, the ImageMagick library. This library can
read more than 80 file formats, including SVG, BMP, EPS, DICOM and many
others.
The reader can handle any ImageMagick image, including the float and double
formats. It will work with any quantum size, including HDR. Any metadata
attached to the libMagick image is copied on to the VIPS image.

The reader should also work with most versions of GraphicsMagick. See the
"--with-magickpackage" configure option.

The file format is usually guessed from the filename suffix, or sniffed
from the file contents.

Normally it will only load the first image in a many-image sequence (such
as a GIF or a PDF). Use page
 and n
 to set the start page and number of
pages to load. Set n
 to -1 to load all pages from page
 onwards.

density
 is "WxH" in DPI, e.g. "600x300" or "600" (default is "72x72"). See
the density
docs
on the imagemagick website.

See also: vips_image_new_from_file().

Parameters

	filename
	file to load
	
	out
	decompressed image.
	[out]
	...
	NULL-terminated list of optional named arguments
	

Returns

 0 on success, -1 on error.

vips_magickload_buffer ()

int
vips_magickload_buffer (void *buf,
 size_t len,
 VipsImage **out,
 ...);

Optional arguments:

	page
: gint, load from this page

	n
: gint, load this many pages

	density
: string, canvas resolution for rendering vector formats like SVG

Read an image memory block using libMagick into a VIPS image. Exactly as
vips_magickload(), but read from a memory source.

You must not free the buffer while out
 is active. The
“postclose” signal on out
 is a good place to free.

See also: vips_magickload().

Parameters

	buf
	memory area to load.
	[array length=len][element-type guint8]
	len
	size of memory area
	
	out
	image to write.
	[out]
	...
	NULL-terminated list of optional named arguments
	

Returns

 0 on success, -1 on error.

vips_magicksave ()

int
vips_magicksave (VipsImage *in,
 const char *filename,
 ...);

Optional arguments:

	quality
: gint, quality factor

	format
: gchararray, format to save as

	optimize_gif_frames
: gboolean, apply GIF frames optimization

	optimize_gif_transparency
: gboolean, apply GIF transparency optimization

	bitdepth
: gint, number of bits per pixel

Write an image using libMagick.

Use quality
 to set the quality factor. Default 0.

Use format
 to explicitly set the save format, for example, "BMP". Otherwise
the format is guessed from the filename suffix.

If optimize_gif_frames
 is set, GIF frames are cropped to the smallest size
while preserving the results of the GIF animation. This takes some time for
computation but saves some time on encoding and produces smaller files in
some cases.

If optimize_gif_transparency
 is set, pixels that don't change the image
through animation are made transparent. This takes some time for computation
but saves some time on encoding and produces smaller files in some cases.

bitdepth
 specifies the number of bits per pixel. The image will be quantized
and dithered if the value is within the valid range (1 to 8).

See also: vips_magicksave_buffer(), vips_magickload().

[method]

Parameters

	in
	image to save
	
	filename
	file to write to
	
	...
	NULL-terminated list of optional named arguments
	

Returns

 0 on success, -1 on error.

vips_magicksave_buffer ()

int
vips_magicksave_buffer (VipsImage *in,
 void **buf,
 size_t *len,
 ...);

Optional arguments:

	quality
: gint, quality factor

	format
: gchararray, format to save as

	optimize_gif_frames
: gboolean, apply GIF frames optimization

	optimize_gif_transparency
: gboolean, apply GIF transparency optimization

	bitdepth
: gint, number of bits per pixel

As vips_magicksave(), but save to a memory buffer.

The address of the buffer is returned in obuf
, the length of the buffer in
olen
. You are responsible for freeing the buffer with g_free() when you
are done with it.

See also: vips_magicksave(), vips_image_write_to_file().

[method]

Parameters

	in
	image to save
	
	buf
	return output buffer here.
	[array length=len][element-type guint8]
	len
	return output length here.
	[type gsize]
	...
	NULL-terminated list of optional named arguments
	

Returns

 0 on success, -1 on error.

vips_pngload_source ()

int
vips_pngload_source (VipsSource *source,
 VipsImage **out,
 ...);

Optional arguments:

	fail_on
: VipsFailOn, types of read error to fail on

	unlimited
: gboolean, Remove all denial of service limits

Exactly as vips_pngload(), but read from a source.

See also: vips_pngload().

Parameters

	source
	source to load from
	
	out
	image to write.
	[out]
	...
	NULL-terminated list of optional named arguments
	

Returns

 0 on success, -1 on error.

vips_pngload ()

int
vips_pngload (const char *filename,
 VipsImage **out,
 ...);

Optional arguments:

	fail_on
: VipsFailOn, types of read error to fail on

	unlimited
: gboolean, remove all denial of service limits

Read a PNG file into a VIPS image. It can read all png images, including 8-
and 16-bit images, 1 and 3 channel, with and without an alpha channel.

Any ICC profile is read and attached to the VIPS image. It also supports
XMP metadata.

Use fail_on
 to set the type of error that will cause load to fail. By
default, loaders are permissive, that is, VIPS_FAIL_ON_NONE.

By default, the PNG loader limits the number of text and data chunks to
block some denial of service attacks. Set unlimited
 to disable these
limits.

See also: vips_image_new_from_file().

Parameters

	filename
	file to load
	
	out
	decompressed image.
	[out]
	...
	NULL-terminated list of optional named arguments
	

Returns

 0 on success, -1 on error.

vips_pngload_buffer ()

int
vips_pngload_buffer (void *buf,
 size_t len,
 VipsImage **out,
 ...);

Optional arguments:

	fail_on
: VipsFailOn, types of read error to fail on

	unlimited
: gboolean, Remove all denial of service limits

Exactly as vips_pngload(), but read from a PNG-formatted memory block.

You must not free the buffer while out
 is active. The
“postclose” signal on out
 is a good place to free.

See also: vips_pngload().

Parameters

	buf
	memory area to load.
	[array length=len][element-type guint8]
	len
	size of memory area.
	[type gsize]
	out
	image to write.
	[out]
	...
	NULL-terminated list of optional named arguments
	

Returns

 0 on success, -1 on error.

vips_pngsave_target ()

int
vips_pngsave_target (VipsImage *in,
 VipsTarget *target,
 ...);

Optional arguments:

	compression
: compression level

	interlace
: interlace image

	filter
: libpng row filter flag(s)

	palette
: enable quantisation to 8bpp palette

	Q
: quality for 8bpp quantisation

	dither
: amount of dithering for 8bpp quantization

	bitdepth
: gint, set write bit depth to 1, 2, 4, 8 or 16

	effort
: gint, quantisation CPU effort

As vips_pngsave(), but save to a target.

See also: vips_pngsave(), vips_image_write_to_target().

[method]

Parameters

	in
	image to save
	
	target
	save image to this target
	
	...
	NULL-terminated list of optional named arguments
	

Returns

 0 on success, -1 on error.

vips_pngsave ()

int
vips_pngsave (VipsImage *in,
 const char *filename,
 ...);

Optional arguments:

	compression
: gint, compression level

	interlace
: gboolean, interlace image

	filter
: VipsForeignPngFilter row filter flag(s)

	palette
: gboolean, enable quantisation to 8bpp palette

	Q
: gint, quality for 8bpp quantisation

	dither
: gdouble, amount of dithering for 8bpp quantization

	bitdepth
: gint, set write bit depth to 1, 2, 4, 8 or 16

	effort
: gint, quantisation CPU effort

Write a VIPS image to a file as PNG.

compression
 means compress with this much effort (0 - 9). Default 6.

Set interlace
 to TRUE to interlace the image with ADAM7
interlacing. Beware
than an interlaced PNG can be up to 7 times slower to write than a
non-interlaced image.

Use filter
 to specify one or more filters, defaults to none,
see VipsForeignPngFilter.

The image is automatically converted to RGB, RGBA, Monochrome or Mono +
alpha before saving. Images with more than one byte per band element are
saved as 16-bit PNG, others are saved as 8-bit PNG.

Set palette
 to TRUE to enable palette mode for RGB or RGBA images. A
palette will be computed with enough space for bitdepth
 (1, 2, 4 or 8)
bits. Use Q
 to set the optimisation effort, dither
 to set the degree of
Floyd-Steinberg dithering and effort
 to control the CPU effort
(1 is the fastest, 10 is the slowest, 7 is the default).
This feature requires libvips to be compiled with libimagequant.

The default bitdepth
 is either 8 or 16 depending on the interpretation.
You can also set bitdepth
 for mono and mono + alpha images, and the image
will be quantized.

XMP metadata is written to the XMP chunk. PNG comments are written to
separate text chunks.

See also: vips_image_new_from_file().

[method]

Parameters

	in
	image to save
	
	filename
	file to write to
	
	...
	NULL-terminated list of optional named arguments
	

Returns

 0 on success, -1 on error.

vips_pngsave_buffer ()

int
vips_pngsave_buffer (VipsImage *in,
 void **buf,
 size_t *len,
 ...);

Optional arguments:

	compression
: gint, compression level

	interlace
: gboolean, interlace image

	filter
: VipsForeignPngFilter row filter flag(s)

	palette
: gboolean, enable quantisation to 8bpp palette

	Q
: gint, quality for 8bpp quantisation

	dither
: gdouble, amount of dithering for 8bpp quantization

	bitdepth
: gint, set write bit depth to 1, 2, 4, 8 or 16

	effort
: gint, quantisation CPU effort

As vips_pngsave(), but save to a memory buffer.

The address of the buffer is returned in buf
, the length of the buffer in
len
. You are responsible for freeing the buffer with g_free() when you
are done with it.

See also: vips_pngsave(), vips_image_write_to_file().

[method]

Parameters

	in
	image to save
	
	buf
	return output buffer here.
	[array length=len][element-type guint8]
	len
	return output length here.
	[type gsize]
	...
	NULL-terminated list of optional named arguments
	

Returns

 0 on success, -1 on error.

vips_ppmload ()

int
vips_ppmload (const char *filename,
 VipsImage **out,
 ...);

Read a PPM/PBM/PGM/PFM file into a VIPS image.

It can read 1, 8, 16 and 32 bit images, colour or monochrome,
stored in binary or in ASCII. One bit images become 8 bit VIPS images,
with 0 and 255 for 0 and 1.

See also: vips_image_new_from_file().

Parameters

	filename
	file to load
	
	out
	output image.
	[out]
	...
	NULL-terminated list of optional named arguments
	

Returns

 0 on success, -1 on error.

vips_ppmload_source ()

int
vips_ppmload_source (VipsSource *source,
 VipsImage **out,
 ...);

Exactly as vips_ppmload(), but read from a source.

See also: vips_ppmload().

Parameters

	source
	source to load
	
	out
	output image.
	[out]
	...
	NULL-terminated list of optional named arguments
	

Returns

 0 on success, -1 on error.

vips_ppmsave ()

int
vips_ppmsave (VipsImage *in,
 const char *filename,
 ...);

Optional arguments:

	format
: VipsForeignPpmFormat, format to save in

	ascii
: gboolean, save as ASCII rather than binary

	bitdepth
: gint, bitdepth to save at

Write a VIPS image to a file as PPM. It can write 1, 8, 16 or
32 bit unsigned integer images, float images, colour or monochrome,
stored as binary or ASCII.
Integer images of more than 8 bits can only be stored in ASCII.

When writing float (PFM) images the scale factor is set from the
"pfm-scale" metadata.

Set ascii
 to TRUE to write as human-readable ASCII. Normally data is
written in binary.

Set bitdepth
 to 1 to write a one-bit image.

format
 defaults to the sub-type for this filename suffix.

See also: vips_image_write_to_file().

[method]

Parameters

	in
	image to save
	
	filename
	file to write to
	
	...
	NULL-terminated list of optional named arguments
	

Returns

 0 on success, -1 on error.

vips_ppmsave_target ()

int
vips_ppmsave_target (VipsImage *in,
 VipsTarget *target,
 ...);

Optional arguments:

	format
: VipsForeignPpmFormat, format to save in

	ascii
: gboolean, save as ASCII rather than binary

	bitdepth
: gint, bitdepth to save at

As vips_ppmsave(), but save to a target.

See also: vips_ppmsave().

[method]

Parameters

	in
	image to save
	
	target
	save image to this target
	
	...
	NULL-terminated list of optional named arguments
	

Returns

 0 on success, -1 on error.

vips_matload ()

int
vips_matload (const char *filename,
 VipsImage **out,
 ...);

Read a Matlab save file into a VIPS image.

This operation searches the save
file for the first array variable with between 1 and 3 dimensions and loads
it as an image. It will not handle complex images. It does not handle
sparse matrices.

See also: vips_image_new_from_file().

Parameters

	filename
	file to load
	
	out
	output image.
	[out]
	...
	NULL-terminated list of optional named arguments
	

Returns

 0 on success, -1 on error.

vips_radload_source ()

int
vips_radload_source (VipsSource *source,
 VipsImage **out,
 ...);

Exactly as vips_radload(), but read from a source.

See also: vips_radload().

Parameters

	source
	source to load from
	
	out
	output image.
	[out]
	...
	NULL-terminated list of optional named arguments
	

Returns

 0 on success, -1 on error.

vips_radload ()

int
vips_radload (const char *filename,
 VipsImage **out,
 ...);

Read a Radiance (HDR) file into a VIPS image.

Radiance files are read as VIPS_CODING_RAD. They have one byte for each of
red, green and blue, and one byte of shared exponent. Some operations (like
vips_extract_area()) can work directly with images in this format, but
mmany (all the arithmetic operations, for example) will not. Unpack
VIPS_CODING_RAD images to 3 band float with vips_rad2float() if
you want to do arithmetic on them.

This operation ignores some header fields, like VIEW and DATE. It will not
rotate/flip as the FORMAT string asks.

Sections of this reader from Greg Ward and Radiance with kind permission.

See also: vips_image_new_from_file().

Parameters

	filename
	file to load
	
	out
	output image.
	[out]
	...
	NULL-terminated list of optional named arguments
	

Returns

 0 on success, -1 on error.

vips_radload_buffer ()

int
vips_radload_buffer (void *buf,
 size_t len,
 VipsImage **out,
 ...);

Exactly as vips_radload(), but read from a HDR-formatted memory block.

You must not free the buffer while out
 is active. The
“postclose” signal on out
 is a good place to free.

See also: vips_radload().

Parameters

	buf
	memory area to load.
	[array length=len][element-type guint8]
	len
	size of memory area.
	[type gsize]
	out
	image to write.
	[out]
	...
	NULL-terminated list of optional named arguments
	

Returns

 0 on success, -1 on error.

vips_radsave ()

int
vips_radsave (VipsImage *in,
 const char *filename,
 ...);

Write a VIPS image in Radiance (HDR) format.

Sections of this reader from Greg Ward and Radiance with kind permission.

See also: vips_image_write_to_file().

[method]

Parameters

	in
	image to save
	
	filename
	file to write to
	
	...
	NULL-terminated list of optional named arguments
	

Returns

 0 on success, -1 on error.

vips_radsave_buffer ()

int
vips_radsave_buffer (VipsImage *in,
 void **buf,
 size_t *len,
 ...);

As vips_radsave(), but save to a memory buffer.

The address of the buffer is returned in buf
, the length of the buffer in
len
. You are responsible for freeing the buffer with g_free() when you
are done with it.

See also: vips_radsave(), vips_image_write_to_file().

[method]

Parameters

	in
	image to save
	
	buf
	return output buffer here.
	[array length=len][element-type guint8]
	len
	return output length here.
	[type gsize]
	...
	NULL-terminated list of optional named arguments
	

Returns

 0 on success, -1 on error.

vips_radsave_target ()

int
vips_radsave_target (VipsImage *in,
 VipsTarget *target,
 ...);

As vips_radsave(), but save to a target.

See also: vips_radsave().

[method]

Parameters

	in
	image to save
	
	target
	save image to this target
	
	...
	NULL-terminated list of optional named arguments
	

Returns

 0 on success, -1 on error.

vips_pdfload ()

int
vips_pdfload (const char *filename,
 VipsImage **out,
 ...);

Optional arguments:

	page
: gint, load this page, numbered from zero

	n
: gint, load this many pages

	dpi
: gdouble, render at this DPI

	scale
: gdouble, scale render by this factor

	background
: VipsArrayDouble background colour

	password
: gchararray background colour

Render a PDF file into a VIPS image.

The output image is always RGBA --- CMYK PDFs will be
converted. If you need CMYK bitmaps, you should use vips_magickload()
instead.

Use page
 to select a page to render, numbering from zero.

Use n
 to select the number of pages to render. The default is 1. Pages are
rendered in a vertical column, with each individual page aligned to the
left. Set to -1 to mean "until the end of the document". Use vips_grid()
to change page layout.

Use dpi
 to set the rendering resolution. The default is 72. Additionally,
you can scale by setting scale
. If you set both, they combine.

Use background
 to set the background RGBA colour. The default is 255
(solid white), use eg. 0 for a transparent background.

Use password
 to supply a decryption password.

The operation fills a number of header fields with metadata, for example
"pdf-author". They may be useful.

This function only reads the image header and does not render any pixel
data. Rendering occurs when pixels are accessed.

See also: vips_image_new_from_file(), vips_magickload().

Parameters

	filename
	file to load
	
	out
	output image.
	[out]
	...
	NULL-terminated list of optional named arguments
	

Returns

 0 on success, -1 on error.

vips_pdfload_buffer ()

int
vips_pdfload_buffer (void *buf,
 size_t len,
 VipsImage **out,
 ...);

Optional arguments:

	page
: gint, load this page, numbered from zero

	n
: gint, load this many pages

	dpi
: gdouble, render at this DPI

	scale
: gdouble, scale render by this factor

	background
: VipsArrayDouble background colour

Read a PDF-formatted memory buffer into a VIPS image. Exactly as
vips_pdfload(), but read from memory.

You must not free the buffer while out
 is active. The
“postclose” signal on out
 is a good place to free.

See also: vips_pdfload().

Parameters

	buf
	memory area to load.
	[array length=len][element-type guint8]
	len
	size of memory area.
	[type gsize]
	out
	image to write.
	[out]
	...
	NULL-terminated list of optional named arguments
	

Returns

 0 on success, -1 on error.

vips_pdfload_source ()

int
vips_pdfload_source (VipsSource *source,
 VipsImage **out,
 ...);

Optional arguments:

	page
: gint, load this page, numbered from zero

	n
: gint, load this many pages

	dpi
: gdouble, render at this DPI

	scale
: gdouble, scale render by this factor

	background
: VipsArrayDouble background colour

Exactly as vips_pdfload(), but read from a source.

See also: vips_pdfload()

Parameters

	source
	source to load from
	
	out
	image to write.
	[out]
	...
	NULL-terminated list of optional named arguments
	

Returns

 0 on success, -1 on error.

vips_svgload ()

int
vips_svgload (const char *filename,
 VipsImage **out,
 ...);

Optional arguments:

	dpi
: gdouble, render at this DPI

	scale
: gdouble, scale render by this factor

	unlimited
: gboolean, allow SVGs of any size

Render a SVG file into a VIPS image. Rendering uses the librsvg library
and should be fast.

Use dpi
 to set the rendering resolution. The default is 72. You can also
scale the rendering by scale
.

This function only reads the image header and does not render any pixel
data. Rendering occurs when pixels are accessed.

SVGs larger than 10MB are normally blocked for security. Set unlimited
 to
allow SVGs of any size.

See also: vips_image_new_from_file().

Parameters

	filename
	file to load
	
	out
	output image.
	[out]
	...
	NULL-terminated list of optional named arguments
	

Returns

 0 on success, -1 on error.

vips_svgload_buffer ()

int
vips_svgload_buffer (void *buf,
 size_t len,
 VipsImage **out,
 ...);

Optional arguments:

	dpi
: gdouble, render at this DPI

	scale
: gdouble, scale render by this factor

	unlimited
: gboolean, allow SVGs of any size

Read a SVG-formatted memory block into a VIPS image. Exactly as
vips_svgload(), but read from a memory buffer.

You must not free the buffer while out
 is active. The
“postclose” signal on out
 is a good place to free.

See also: vips_svgload().

Parameters

	buf
	memory area to load.
	[array length=len][element-type guint8]
	len
	size of memory area.
	[type gsize]
	out
	image to write.
	[out]
	...
	NULL-terminated list of optional named arguments
	

Returns

 0 on success, -1 on error.

vips_svgload_string ()

int
vips_svgload_string (const char *str,
 VipsImage **out,
 ...);

Optional arguments:

	dpi
: gdouble, render at this DPI

	scale
: gdouble, scale render by this factor

	unlimited
: gboolean, allow SVGs of any size

Exactly as vips_svgload(), but read from a string. This function takes a
copy of the string.

See also: vips_svgload().

Parameters

	str
	string to load
	
	out
	image to write.
	[out]
	...
	NULL-terminated list of optional named arguments
	

Returns

 0 on success, -1 on error.

vips_svgload_source ()

int
vips_svgload_source (VipsSource *source,
 VipsImage **out,
 ...);

Exactly as vips_svgload(), but read from a source.

See also: vips_svgload().

Parameters

	source
	source to load from
	
	out
	image to write.
	[out]
	...
	NULL-terminated list of optional named arguments
	

Returns

 0 on success, -1 on error.

vips_gifload ()

int
vips_gifload (const char *filename,
 VipsImage **out,
 ...);

Optional arguments:

	page
: gint, page (frame) to read

	n
: gint, load this many pages

	fail_on
: VipsFailOn, types of read error to fail on

Read a GIF file into a libvips image.

Use page
 to select a page to render, numbering from zero.

Use n
 to select the number of pages to render. The default is 1. Pages are
rendered in a vertical column. Set to -1 to mean "until the end of the
document". Use vips_grid() to change page layout.

Use fail_on
 to set the type of error that will cause load to fail. By
default, loaders are permissive, that is, VIPS_FAIL_ON_NONE.

The output image is RGBA for GIFs containing transparent elements, RGB
otherwise.

See also: vips_image_new_from_file().

Parameters

	filename
	file to load
	
	out
	output image.
	[out]
	...
	NULL-terminated list of optional named arguments
	

Returns

 0 on success, -1 on error.

vips_gifload_buffer ()

int
vips_gifload_buffer (void *buf,
 size_t len,
 VipsImage **out,
 ...);

Optional arguments:

	page
: gint, page (frame) to read

	n
: gint, load this many pages

	fail_on
: VipsFailOn, types of read error to fail on

Exactly as vips_gifload(), but read from a memory buffer.

You must not free the buffer while out
 is active. The
“postclose” signal on out
 is a good place to free.

See also: vips_gifload().

Parameters

	buf
	memory area to load.
	[array length=len][element-type guint8]
	len
	size of memory area.
	[type gsize]
	out
	image to write.
	[out]
	...
	NULL-terminated list of optional named arguments
	

Returns

 0 on success, -1 on error.

vips_gifload_source ()

int
vips_gifload_source (VipsSource *source,
 VipsImage **out,
 ...);

Optional arguments:

	page
: gint, page (frame) to read

	n
: gint, load this many pages

	fail_on
: VipsFailOn, types of read error to fail on

Exactly as vips_gifload(), but read from a source.

See also: vips_gifload().

Parameters

	source
	source to load
	
	out
	image to write.
	[out]
	...
	NULL-terminated list of optional named arguments
	

Returns

 0 on success, -1 on error.

vips_gifsave ()

int
vips_gifsave (VipsImage *in,
 const char *filename,
 ...);

Optional arguments:

	dither
: gdouble, quantisation dithering level

	effort
: gint, quantisation CPU effort

	bitdepth
: gint, number of bits per pixel

	interframe_maxerror
: gdouble, maximum inter-frame error for transparency

	reuse
: gboolean, reuse palette from input

	interlace
: gboolean, write an interlaced (progressive) GIF

	interpalette_maxerror
: gdouble, maximum inter-palette error for palette
reusage

Write to a file in GIF format.

Use dither
 to set the degree of Floyd-Steinberg dithering
and effort
 to control the CPU effort (1 is the fastest,
10 is the slowest, 7 is the default).

Use bitdepth
 (from 1 to 8, default 8) to control the number
of colours in the palette. The first entry in the palette is
always reserved for transparency. For example, a bitdepth of
4 will allow the output to contain up to 15 colours.

Use interframe_maxerror
 to set the threshold below which pixels are
considered equal.
Pixels which don't change from frame to frame can be made transparent,
improving the compression rate. Default 0.

Use interpalette_maxerror
 to set the threshold below which the
previously generated palette will be reused.

If reuse
 is TRUE, the GIF will be saved with a single global
palette taken from the metadata in in
, and no new palette optimisation
will be done.

If interlace
 is TRUE, the GIF file will be interlaced (progressive GIF).
These files may be better for display over a slow network
connection, but need more memory to encode.

See also: vips_image_new_from_file().

[method]

Parameters

	in
	image to save
	
	filename
	file to write to
	
	...
	NULL-terminated list of optional named arguments
	

Returns

 0 on success, -1 on error.

vips_gifsave_buffer ()

int
vips_gifsave_buffer (VipsImage *in,
 void **buf,
 size_t *len,
 ...);

Optional arguments:

	dither
: gdouble, quantisation dithering level

	effort
: gint, quantisation CPU effort

	bitdepth
: gint, number of bits per pixel

	interframe_maxerror
: gdouble, maximum inter-frame error for transparency

	reuse
: gboolean, reuse palette from input

	interlace
: gboolean, write an interlaced (progressive) GIF

	interpalette_maxerror
: gdouble, maximum inter-palette error for palette
reusage

As vips_gifsave(), but save to a memory buffer.

The address of the buffer is returned in buf
, the length of the buffer in
len
. You are responsible for freeing the buffer with g_free() when you
are done with it.

See also: vips_gifsave(), vips_image_write_to_file().

[method]

Parameters

	in
	image to save
	
	buf
	return output buffer here.
	[array length=len][element-type guint8]
	len
	return output length here.
	[type gsize]
	...
	NULL-terminated list of optional named arguments
	

Returns

 0 on success, -1 on error.

vips_gifsave_target ()

int
vips_gifsave_target (VipsImage *in,
 VipsTarget *target,
 ...);

Optional arguments:

	dither
: gdouble, quantisation dithering level

	effort
: gint, quantisation CPU effort

	bitdepth
: gint, number of bits per pixel

	interframe_maxerror
: gdouble, maximum inter-frame error for transparency

	reuse
: gboolean, reuse palette from input

	interlace
: gboolean, write an interlaced (progressive) GIF

	interpalette_maxerror
: gdouble, maximum inter-palette error for palette
reusage

As vips_gifsave(), but save to a target.

See also: vips_gifsave(), vips_image_write_to_target().

[method]

Parameters

	in
	image to save
	
	target
	save image to this target
	
	...
	NULL-terminated list of optional named arguments
	

Returns

 0 on success, -1 on error.

vips_heifload ()

int
vips_heifload (const char *filename,
 VipsImage **out,
 ...);

Optional arguments:

	page
: gint, page (top-level image number) to read

	n
: gint, load this many pages

	thumbnail
: gboolean, fetch thumbnail instead of image

	unlimited
: gboolean, remove all denial of service limits

Read a HEIF image file into a VIPS image.

Use page
 to select a page to render, numbering from zero. If neither n

nor page
 are set, page
 defaults to the primary page, otherwise to 0.

Use n
 to select the number of pages to render. The default is 1. Pages are
rendered in a vertical column. Set to -1 to mean "until the end of the
document". Use vips_grid() to reorganise pages.

HEIF images have a primary image. The metadata item heif-primary gives
the page number of the primary.

If thumbnail
 is TRUE, then fetch a stored thumbnail rather than the
image.

By default, input image dimensions are limited to 16384x16384.
If unlimited
 is TRUE, this increases to the maximum of 65535x65535.

The bitdepth of the heic image is recorded in the metadata item
heif-bitdepth.

See also: vips_image_new_from_file().

Parameters

	filename
	file to load
	
	out
	decompressed image.
	[out]
	...
	NULL-terminated list of optional named arguments
	

Returns

 0 on success, -1 on error.

vips_heifload_buffer ()

int
vips_heifload_buffer (void *buf,
 size_t len,
 VipsImage **out,
 ...);

Optional arguments:

	page
: gint, page (top-level image number) to read

	n
: gint, load this many pages

	thumbnail
: gboolean, fetch thumbnail instead of image

	unlimited
: gboolean, remove all denial of service limits

Read a HEIF image file into a VIPS image.
Exactly as vips_heifload(), but read from a memory buffer.

You must not free the buffer while out
 is active. The
“postclose” signal on out
 is a good place to free.

See also: vips_heifload().

Parameters

	buf
	memory area to load.
	[array length=len][element-type guint8]
	len
	size of memory area.
	[type gsize]
	out
	image to write.
	[out]
	...
	NULL-terminated list of optional named arguments
	

Returns

 0 on success, -1 on error.

vips_heifload_source ()

int
vips_heifload_source (VipsSource *source,
 VipsImage **out,
 ...);

Optional arguments:

	page
: gint, page (top-level image number) to read

	n
: gint, load this many pages

	thumbnail
: gboolean, fetch thumbnail instead of image

	unlimited
: gboolean, remove all denial of service limits

Exactly as vips_heifload(), but read from a source.

See also: vips_heifload().

Parameters

	source
	source to load from
	
	out
	image to write.
	[out]
	...
	NULL-terminated list of optional named arguments
	

Returns

 0 on success, -1 on error.

vips_heifsave ()

int
vips_heifsave (VipsImage *in,
 const char *filename,
 ...);

Optional arguments:

	Q
: gint, quality factor

	bitdepth
: gint, set write bit depth to 8, 10, or 12 bits

	lossless
: gboolean, enable lossless encoding

	compression
: VipsForeignHeifCompression, write with this compression

	effort
: gint, encoding effort

	subsample_mode
: VipsForeignSubsample, chroma subsampling mode

	encoder
: VipsForeignHeifEncoder, select encoder to use

Write a VIPS image to a file in HEIF format.

Use Q
 to set the compression factor. Default 50, which seems to be roughly
what the iphone uses. Q 30 gives about the same quality as JPEG Q 75.

Set lossless
 TRUE to switch to lossless compression.

Use compression
 to set the compression format e.g. HEVC, AVC, AV1 to use. It defaults to AV1
if the target filename ends with ".avif", otherwise HEVC.

Use effort
 to control the CPU effort spent improving compression.
This is currently only applicable to AV1 encoders. Defaults to 4, 0 is
fastest, 9 is slowest.

Chroma subsampling is normally automatically disabled for Q >= 90. You can
force the subsampling mode with subsample_mode
.

Use bitdepth
 to set the bitdepth of the output file. HEIC supports at
least 8, 10 and 12 bits; other codecs may support more or fewer options.

Use encoder
 to set the encode library to use, e.g. aom, SVT-AV1, rav1e etc.

See also: vips_image_write_to_file(), vips_heifload().

[method]

Parameters

	in
	image to save
	
	filename
	file to write to
	
	...
	NULL-terminated list of optional named arguments
	

Returns

 0 on success, -1 on error.

vips_heifsave_buffer ()

int
vips_heifsave_buffer (VipsImage *in,
 void **buf,
 size_t *len,
 ...);

Optional arguments:

	Q
: gint, quality factor

	bitdepth
: gint, set write bit depth to 8, 10, or 12 bits

	lossless
: gboolean, enable lossless encoding

	compression
: VipsForeignHeifCompression, write with this compression

	effort
: gint, encoding effort

	subsample_mode
: VipsForeignSubsample, chroma subsampling mode

	encoder
: VipsForeignHeifEncoder, select encoder to use

As vips_heifsave(), but save to a memory buffer.

The address of the buffer is returned in obuf
, the length of the buffer in
olen
. You are responsible for freeing the buffer with g_free() when you
are done with it.

See also: vips_heifsave(), vips_image_write_to_file().

[method]

Parameters

	in
	image to save
	
	buf
	return output buffer here.
	[array length=len][element-type guint8]
	len
	return output length here.
	[type gsize]
	...
	NULL-terminated list of optional named arguments
	

Returns

 0 on success, -1 on error.

vips_heifsave_target ()

int
vips_heifsave_target (VipsImage *in,
 VipsTarget *target,
 ...);

Optional arguments:

	Q
: gint, quality factor

	bitdepth
: gint, set write bit depth to 8, 10, or 12 bits

	lossless
: gboolean, enable lossless encoding

	compression
: VipsForeignHeifCompression, write with this compression

	effort
: gint, encoding effort

	subsample_mode
: VipsForeignSubsample, chroma subsampling mode

	encoder
: VipsForeignHeifEncoder, select encoder to use

As vips_heifsave(), but save to a target.

See also: vips_heifsave(), vips_image_write_to_target().

[method]

Parameters

	in
	image to save
	
	target
	save image to this target
	
	...
	NULL-terminated list of optional named arguments
	

Returns

 0 on success, -1 on error.

vips_niftiload ()

int
vips_niftiload (const char *filename,
 VipsImage **out,
 ...);

Read a NIFTI image file into a VIPS image.

NIFTI metadata is attached with the "nifti-" prefix.

See also: vips_image_new_from_file().

Parameters

	filename
	file to load
	
	out
	decompressed image.
	[out]
	...
	NULL-terminated list of optional named arguments
	

Returns

 0 on success, -1 on error.

vips_niftiload_source ()

int
vips_niftiload_source (VipsSource *source,
 VipsImage **out,
 ...);

Exactly as vips_niftiload(), but read from a source.

Parameters

	source
	source to load from
	
	out
	decompressed image.
	[out]
	...
	NULL-terminated list of optional named arguments
	

Returns

 0 on success, -1 on error.

vips_niftisave ()

int
vips_niftisave (VipsImage *in,
 const char *filename,
 ...);

Write a VIPS image to a file in NIFTI format.

Use the various NIFTI suffixes to pick the nifti save format.

See also: vips_image_write_to_file(), vips_niftiload().

[method]

Parameters

	in
	image to save
	
	filename
	file to write to
	
	...
	NULL-terminated list of optional named arguments
	

Returns

 0 on success, -1 on error.

vips_jp2kload ()

int
vips_jp2kload (const char *filename,
 VipsImage **out,
 ...);

Optional arguments:

	page
: gint, load this page

	fail_on
: VipsFailOn, types of read error to fail on

Read a JPEG2000 image. The loader supports 8, 16 and 32-bit int pixel
values, signed and unsigned. It supports greyscale, RGB, YCC, CMYK and
multispectral colour spaces. It will read any ICC profile on the image.

It will only load images where all channels have the same format.

Use page
 to set the page to load, where page 0 is the base resolution
image and higher-numbered pages are x2 reductions. Use the metadata item
"n-pages" to find the number of pyramid layers.

Use fail_on
 to set the type of error that will cause load to fail. By
default, loaders are permissive, that is, VIPS_FAIL_ON_NONE.

See also: vips_image_new_from_file().

Parameters

	filename
	file to load
	
	out
	decompressed image.
	[out]
	...
	NULL-terminated list of optional named arguments
	

Returns

 0 on success, -1 on error.

vips_jp2kload_buffer ()

int
vips_jp2kload_buffer (void *buf,
 size_t len,
 VipsImage **out,
 ...);

Optional arguments:

	page
: gint, load this page

	fail_on
: VipsFailOn, types of read error to fail on

Exactly as vips_jp2kload(), but read from a buffer.

You must not free the buffer while out
 is active. The
“postclose” signal on out
 is a good place to free.

Parameters

	buf
	memory area to load.
	[array length=len][element-type guint8]
	len
	size of memory area.
	[type gsize]
	out
	image to write.
	[out]
	...
	NULL-terminated list of optional named arguments
	

Returns

 0 on success, -1 on error.

vips_jp2kload_source ()

int
vips_jp2kload_source (VipsSource *source,
 VipsImage **out,
 ...);

Optional arguments:

	page
: gint, load this page

	fail_on
: VipsFailOn, types of read error to fail on

Exactly as vips_jp2kload(), but read from a source.

Parameters

	source
	source to load from
	
	out
	decompressed image.
	[out]
	...
	NULL-terminated list of optional named arguments
	

Returns

 0 on success, -1 on error.

vips_jp2ksave ()

int
vips_jp2ksave (VipsImage *in,
 const char *filename,
 ...);

Optional arguments:

	Q
: gint, quality factor

	lossless
: gboolean, enables lossless compression

	tile_width
: gint for tile size

	tile_height
: gint for tile size

	subsample_mode
: VipsForeignSubsample, chroma subsampling mode

Write a VIPS image to a file in JPEG2000 format.
The saver supports 8, 16 and 32-bit int pixel
values, signed and unsigned. It supports greyscale, RGB, CMYK and
multispectral images.

Use Q
 to set the compression quality factor. The default value
produces file with approximately the same size as regular JPEG Q 75.

Set lossless
 to enable lossless compression.

Use tile_width
 and tile_height
 to set the tile size. The default is 512.

Chroma subsampling is normally disabled for compatibility. Set
subsample_mode
 to auto to enable chroma subsample for Q < 90. Subsample
mode uses YCC rather than RGB colourspace, and many jpeg2000 decoders do
not support this.

This operation always writes a pyramid.

See also: vips_image_write_to_file(), vips_jp2kload().

[method]

Parameters

	in
	image to save
	
	filename
	file to write to
	
	...
	NULL-terminated list of optional named arguments
	

Returns

 0 on success, -1 on error.

vips_jp2ksave_buffer ()

int
vips_jp2ksave_buffer (VipsImage *in,
 void **buf,
 size_t *len,
 ...);

Optional arguments:

	Q
: gint, quality factor

	lossless
: gboolean, enables lossless compression

	tile_width
: gint for tile size

	tile_height
: gint for tile size

	subsample_mode
: VipsForeignSubsample, chroma subsampling mode

As vips_jp2ksave(), but save to a target.

See also: vips_jp2ksave(), vips_image_write_to_target().

[method]

Parameters

	in
	image to save
	
	buf
	return output buffer here.
	[array length=len][element-type guint8]
	len
	return output length here.
	[type gsize]
	...
	NULL-terminated list of optional named arguments
	

Returns

 0 on success, -1 on error.

vips_jp2ksave_target ()

int
vips_jp2ksave_target (VipsImage *in,
 VipsTarget *target,
 ...);

Optional arguments:

	Q
: gint, quality factor

	lossless
: gboolean, enables lossless compression

	tile_width
: gint for tile size

	tile_height
: gint for tile size

	subsample_mode
: VipsForeignSubsample, chroma subsampling mode

As vips_jp2ksave(), but save to a target.

See also: vips_jp2ksave(), vips_image_write_to_target().

[method]

Parameters

	in
	image to save
	
	target
	save image to this target
	
	...
	NULL-terminated list of optional named arguments
	

Returns

 0 on success, -1 on error.

vips_jxlload_source ()

int
vips_jxlload_source (VipsSource *source,
 VipsImage **out,
 ...);

Exactly as vips_jxlload(), but read from a source.

Parameters

	source
	source to load from
	
	out
	decompressed image.
	[out]
	...
	NULL-terminated list of optional named arguments
	

Returns

 0 on success, -1 on error.

vips_jxlload_buffer ()

int
vips_jxlload_buffer (void *buf,
 size_t len,
 VipsImage **out,
 ...);

Exactly as vips_jxlload(), but read from a buffer.

Parameters

	buf
	memory area to load.
	[array length=len][element-type guint8]
	len
	size of memory area.
	[type gsize]
	out
	image to write.
	[out]
	...
	NULL-terminated list of optional named arguments
	

Returns

 0 on success, -1 on error.

vips_jxlload ()

int
vips_jxlload (const char *filename,
 VipsImage **out,
 ...);

Read a JPEG-XL image.

The JPEG-XL loader and saver are experimental features and may change
in future libvips versions.

See also: vips_image_new_from_file().

Parameters

	filename
	file to load
	
	out
	decompressed image.
	[out]
	...
	NULL-terminated list of optional named arguments
	

Returns

 0 on success, -1 on error.

vips_jxlsave ()

int
vips_jxlsave (VipsImage *in,
 const char *filename,
 ...);

Optional arguments:

	tier
: gint, decode speed tier

	distance
: gdouble, maximum encoding error

	effort
: gint, encoding effort

	lossless
: gboolean, enables lossless compression

	Q
: gint, quality setting

Write a VIPS image to a file in JPEG-XL format.

The JPEG-XL loader and saver are experimental features and may change
in future libvips versions.

tier
 sets the overall decode speed the encoder will target. Minimum is 0
(highest quality), and maximum is 4 (lowest quality). Default is 0.

distance
 sets the target maximum encoding error. Minimum is 0
(highest quality), and maximum is 15 (lowest quality). Default is 1.0
(visually lossless).

As a convenience, you can also use Q
 to set distance
. Q
 uses
approximately the same scale as regular JPEG.

Set lossless
 to enable lossless compression.

[method]

Parameters

	in
	image to save
	
	filename
	file to write to
	
	...
	NULL-terminated list of optional named arguments
	

Returns

 0 on success, -1 on error.

vips_jxlsave_buffer ()

int
vips_jxlsave_buffer (VipsImage *in,
 void **buf,
 size_t *len,
 ...);

Optional arguments:

	tier
: gint, decode speed tier

	distance
: gdouble, maximum encoding error

	effort
: gint, encoding effort

	lossless
: gboolean, enables lossless compression

	Q
: gint, quality setting

As vips_jxlsave(), but save to a memory buffer.

See also: vips_jxlsave(), vips_image_write_to_target().

[method]

Parameters

	in
	image to save
	
	buf
	return output buffer here.
	[array length=len][element-type guint8]
	len
	return output length here.
	[type gsize]
	...
	NULL-terminated list of optional named arguments
	

Returns

 0 on success, -1 on error.

vips_jxlsave_target ()

int
vips_jxlsave_target (VipsImage *in,
 VipsTarget *target,
 ...);

Optional arguments:

	tier
: gint, decode speed tier

	distance
: gdouble, maximum encoding error

	effort
: gint, encoding effort

	lossless
: gboolean, enables lossless compression

	Q
: gint, quality setting

As vips_jxlsave(), but save to a target.

See also: vips_jxlsave(), vips_image_write_to_target().

[method]

Parameters

	in
	image to save
	
	target
	save image to this target
	
	...
	NULL-terminated list of optional named arguments
	

Returns

 0 on success, -1 on error.

vips_dzsave ()

int
vips_dzsave (VipsImage *in,
 const char *name,
 ...);

Optional arguments:

	basename
: gchar base part of name

	layout
: VipsForeignDzLayout directory layout convention

	suffix
: gchar suffix for tiles

	overlap
: gint set tile overlap

	tile_size
: gint set tile size

	background
: VipsArrayDouble background colour

	depth
: VipsForeignDzDepth how deep to make the pyramid

	centre
: gboolean centre the tiles

	angle
: VipsAngle rotate the image by this much

	container
: VipsForeignDzContainer set container type

	compression
: gint zip deflate compression level

	region_shrink
: VipsRegionShrink how to shrink each 2x2 region

	skip_blanks
: gint skip tiles which are nearly equal to the background

	id
: gchar id for IIIF properties

	Q
: gint, quality factor

Save an image as a set of tiles at various resolutions. By default dzsave
uses DeepZoom layout -- use layout
 to pick other conventions.

vips_dzsave() creates a directory called name
 to hold the tiles. If name

ends .zip, vips_dzsave() will create a zip file called name
 to hold the
tiles. You can use container
 to force zip file output.

Use basename
 to set the name of the image we are creating. The
default value is set from name
.

By default, tiles are written as JPEGs. Use Q
 set set the JPEG quality
factor.

You can set suffix
 to something like ".png[bitdepth=4]" to write tiles
in another format.

In Google layout mode, edge tiles are expanded to tile_size
 by tile_size

pixels. Normally they are filled with white, but you can set another colour
with background
. Images are usually placed at the top-left of the tile,
but you can have them centred by turning on centre
.

You can set the size and overlap of tiles with tile_size
 and overlap
.
They default to the correct settings for the selected layout
. The deepzoom
defaults produce 256x256 jpeg files for centre tiles, the most efficient
size.

Use depth
 to control how low the pyramid goes. This defaults to the
correct setting for the layout
 you select.

You can rotate the image during write with the angle
 argument. However,
this will only work for images which support random access, like openslide,
and not for things like JPEG. You'll need to rotate those images
yourself with vips_rot(). Note that the autorotate option to the loader
may do what you need.

By default, all tiles are stripped since usually you do not want a copy of
all metadata in every tile. Set keep
 if you want to keep metadata.

If container
 is set to zip, you can set a compression level from -1
(use zlib default), 0 (store, compression disabled) to 9 (max compression).
If no value is given, the default is to store files without compression.

You can use region_shrink
 to control the method for shrinking each 2x2
region. This defaults to using the average of the 4 input pixels but you can
also use the median in cases where you want to preserve the range of values.

If you set skip_blanks
 to a value greater than or equal to zero, tiles
which are all within that many pixel values to the background are skipped.
This can save a lot of space for some image types. This option defaults to
5 in Google layout mode, -1 otherwise.

In IIIF layout, you can set the base of the id property in info.json
with id
. The default is https://example.com/iiif.

Use layout
 VIPS_FOREIGN_DZ_LAYOUT_IIIF3 for IIIF v3 layout.

See also: vips_tiffsave().

[method]

Parameters

	in
	image to save
	
	name
	name to save to
	
	...
	NULL-terminated list of optional named arguments
	

Returns

 0 on success, -1 on error.

vips_dzsave_buffer ()

int
vips_dzsave_buffer (VipsImage *in,
 void **buf,
 size_t *len,
 ...);

Optional arguments:

	basename
: gchar base part of name

	layout
: VipsForeignDzLayout directory layout convention

	suffix
: gchar suffix for tiles

	overlap
: gint set tile overlap

	tile_size
: gint set tile size

	background
: VipsArrayDouble background colour

	depth
: VipsForeignDzDepth how deep to make the pyramid

	centre
: gboolean centre the tiles

	angle
: VipsAngle rotate the image by this much

	container
: VipsForeignDzContainer set container type

	compression
: gint zip deflate compression level

	region_shrink
: VipsRegionShrink how to shrink each 2x2 region.

	skip_blanks
: gint skip tiles which are nearly equal to the background

	id
: gchar id for IIIF properties

	Q
: gint, quality factor

As vips_dzsave(), but save to a memory buffer.

Output is always in a zip container. Use basename
 to set the name of the
directory that the zip will create when unzipped.

The address of the buffer is returned in buf
, the length of the buffer in
len
. You are responsible for freeing the buffer with g_free() when you
are done with it.

See also: vips_dzsave(), vips_image_write_to_file().

[method]

Parameters

	in
	image to save
	
	buf
	return output buffer here.
	[array length=len][element-type guint8]
	len
	return output length here.
	[type gsize]
	...
	NULL-terminated list of optional named arguments
	

Returns

 0 on success, -1 on error.

vips_dzsave_target ()

int
vips_dzsave_target (VipsImage *in,
 VipsTarget *target,
 ...);

Optional arguments:

	basename
: gchar base part of name

	layout
: VipsForeignDzLayout directory layout convention

	suffix
: gchar suffix for tiles

	overlap
: gint set tile overlap

	tile_size
: gint set tile size

	background
: VipsArrayDouble background colour

	depth
: VipsForeignDzDepth how deep to make the pyramid

	centre
: gboolean centre the tiles

	angle
: VipsAngle rotate the image by this much

	container
: VipsForeignDzContainer set container type

	compression
: gint zip deflate compression level

	region_shrink
: VipsRegionShrink how to shrink each 2x2 region.

	skip_blanks
: gint skip tiles which are nearly equal to the background

	id
: gchar id for IIIF properties

	Q
: gint, quality factor

As vips_dzsave(), but save to a target.

See also: vips_dzsave(), vips_image_write_to_target().

[method]

Parameters

	in
	image to save
	
	target
	save image to this target
	
	...
	NULL-terminated list of optional named arguments
	

Returns

 0 on success, -1 on error.

Types and Values

enum VipsForeignFlags

Some hints about the image loader.

VIPS_FOREIGN_PARTIAL means that the image can be read directly from the
file without needing to be unpacked to a temporary image first.

VIPS_FOREIGN_SEQUENTIAL means that the loader supports lazy reading, but
only top-to-bottom (sequential) access. Formats like PNG can read sets of
scanlines, for example, but only in order.

If neither PARTIAL or SEQUENTIAL is set, the loader only supports whole
image read. Setting both PARTIAL and SEQUENTIAL is an error.

VIPS_FOREIGN_BIGENDIAN means that image pixels are most-significant byte
first. Depending on the native byte order of the host machine, you may
need to swap bytes. See vips_copy().

Members

	VIPS_FOREIGN_NONE
	
no flags set

	
	VIPS_FOREIGN_PARTIAL
	
the image may be read lazilly

	
	VIPS_FOREIGN_BIGENDIAN
	
image pixels are most-significant byte first

	
	VIPS_FOREIGN_SEQUENTIAL
	
top-to-bottom lazy reading

	
	VIPS_FOREIGN_ALL
	 	

enum VipsFailOn

How sensitive loaders are to errors, from never stop (very insensitive), to
stop on the smallest warning (very sensitive).

Each one implies the ones before it, so VIPS_FAIL_ON_ERROR implies
VIPS_FAIL_ON_TRUNCATED.

Members

	VIPS_FAIL_ON_NONE
	
never stop

	
	VIPS_FAIL_ON_TRUNCATED
	
stop on image truncated, nothing else

	
	VIPS_FAIL_ON_ERROR
	
stop on serious error or truncation

	
	VIPS_FAIL_ON_WARNING
	
stop on anything, even warnings

	
	VIPS_FAIL_ON_LAST
	 	

enum VipsSaveable

See also: VipsForeignSave.

Members

	VIPS_SAVEABLE_MONO
	
1 band (eg. CSV)

	
	VIPS_SAVEABLE_RGB
	
1 or 3 bands (eg. PPM)

	
	VIPS_SAVEABLE_RGBA
	
1, 2, 3 or 4 bands (eg. PNG)

	
	VIPS_SAVEABLE_RGBA_ONLY
	
3 or 4 bands (eg. WEBP)

	
	VIPS_SAVEABLE_RGB_CMYK
	
1, 3 or 4 bands (eg. JPEG)

	
	VIPS_SAVEABLE_ANY
	
any number of bands (eg. TIFF)

	
	VIPS_SAVEABLE_LAST
	 	

enum VipsForeignKeep

Which metadata to retain.

Members

	VIPS_FOREIGN_KEEP_NONE
	
don't attach metadata

	
	VIPS_FOREIGN_KEEP_EXIF
	
keep Exif metadata

	
	VIPS_FOREIGN_KEEP_XMP
	
keep XMP metadata

	
	VIPS_FOREIGN_KEEP_IPTC
	
keep IPTC metadata

	
	VIPS_FOREIGN_KEEP_ICC
	
keep ICC metadata

	
	VIPS_FOREIGN_KEEP_OTHER
	
keep other metadata (e.g. PNG comments and some TIFF tags)

	
	VIPS_FOREIGN_KEEP_ALL
	
keep all metadata

	

enum VipsForeignSubsample

Set subsampling mode.

Members

	VIPS_FOREIGN_SUBSAMPLE_AUTO
	
prevent subsampling when quality >= 90

	
	VIPS_FOREIGN_SUBSAMPLE_ON
	
always perform subsampling

	
	VIPS_FOREIGN_SUBSAMPLE_OFF
	
never perform subsampling

	
	VIPS_FOREIGN_SUBSAMPLE_LAST
	 	

enum VipsForeignJpegSubsample

VipsForeignJpegSubsample is deprecated and should not be used in newly-written code.

use VipsForeignSubsample

Set jpeg subsampling mode.

Members

	VIPS_FOREIGN_JPEG_SUBSAMPLE_AUTO
	
default preset

	
	VIPS_FOREIGN_JPEG_SUBSAMPLE_ON
	
always perform subsampling

	
	VIPS_FOREIGN_JPEG_SUBSAMPLE_OFF
	
never perform subsampling

	
	VIPS_FOREIGN_JPEG_SUBSAMPLE_LAST
	 	

enum VipsForeignWebpPreset

Tune lossy encoder settings for different image types.

Members

	VIPS_FOREIGN_WEBP_PRESET_DEFAULT
	
default preset

	
	VIPS_FOREIGN_WEBP_PRESET_PICTURE
	
digital picture, like portrait, inner shot

	
	VIPS_FOREIGN_WEBP_PRESET_PHOTO
	
outdoor photograph, with natural lighting

	
	VIPS_FOREIGN_WEBP_PRESET_DRAWING
	
hand or line drawing, with high-contrast details

	
	VIPS_FOREIGN_WEBP_PRESET_ICON
	
small-sized colorful images

	
	VIPS_FOREIGN_WEBP_PRESET_TEXT
	
text-like

	
	VIPS_FOREIGN_WEBP_PRESET_LAST
	 	

enum VipsForeignTiffCompression

The compression types supported by the tiff writer.

Use Q
 to set the jpeg compression level, default 75.

Use predictor
 to set the lzw or deflate prediction, default horizontal.

Use lossless
 to set WEBP lossless compression.

Use level
 to set webp and zstd compression level.

Members

	VIPS_FOREIGN_TIFF_COMPRESSION_NONE
	
no compression

	
	VIPS_FOREIGN_TIFF_COMPRESSION_JPEG
	
jpeg compression

	
	VIPS_FOREIGN_TIFF_COMPRESSION_DEFLATE
	
deflate (zip) compression

	
	VIPS_FOREIGN_TIFF_COMPRESSION_PACKBITS
	
packbits compression

	
	VIPS_FOREIGN_TIFF_COMPRESSION_CCITTFAX4
	
fax4 compression

	
	VIPS_FOREIGN_TIFF_COMPRESSION_LZW
	
LZW compression

	
	VIPS_FOREIGN_TIFF_COMPRESSION_WEBP
	
WEBP compression

	
	VIPS_FOREIGN_TIFF_COMPRESSION_ZSTD
	
ZSTD compression

	
	VIPS_FOREIGN_TIFF_COMPRESSION_JP2K
	
JP2K compression

	
	VIPS_FOREIGN_TIFF_COMPRESSION_LAST
	 	

enum VipsForeignTiffPredictor

The predictor can help deflate and lzw compression. The values are fixed by
the tiff library.

Members

	VIPS_FOREIGN_TIFF_PREDICTOR_NONE
	
no prediction

	
	VIPS_FOREIGN_TIFF_PREDICTOR_HORIZONTAL
	
horizontal differencing

	
	VIPS_FOREIGN_TIFF_PREDICTOR_FLOAT
	
float predictor

	
	VIPS_FOREIGN_TIFF_PREDICTOR_LAST
	 	

enum VipsForeignTiffResunit

Use inches or centimeters as the resolution unit for a tiff file.

Members

	VIPS_FOREIGN_TIFF_RESUNIT_CM
	
use centimeters

	
	VIPS_FOREIGN_TIFF_RESUNIT_INCH
	
use inches

	
	VIPS_FOREIGN_TIFF_RESUNIT_LAST
	 	

enum VipsForeignPngFilter

http://www.w3.org/TR/PNG-Filters.html
The values mirror those of png.h in libpng.

Members

	VIPS_FOREIGN_PNG_FILTER_NONE
	
no filtering

	
	VIPS_FOREIGN_PNG_FILTER_SUB
	
difference to the left

	
	VIPS_FOREIGN_PNG_FILTER_UP
	
difference up

	
	VIPS_FOREIGN_PNG_FILTER_AVG
	
average of left and up

	
	VIPS_FOREIGN_PNG_FILTER_PAETH
	
pick best neighbor predictor automatically

	
	VIPS_FOREIGN_PNG_FILTER_ALL
	
adaptive

	

enum VipsForeignPpmFormat

The netpbm file format to save as.

VIPS_FOREIGN_PPM_FORMAT_PBM images are single bit.

VIPS_FOREIGN_PPM_FORMAT_PGM images are 8, 16, or 32-bits, one band.

VIPS_FOREIGN_PPM_FORMAT_PPM images are 8, 16, or 32-bits, three bands.

VIPS_FOREIGN_PPM_FORMAT_PFM images are 32-bit float pixels.

VIPS_FOREIGN_PPM_FORMAT_PNM images are anymap images -- the image format
is used to pick the saver.

Members

	VIPS_FOREIGN_PPM_FORMAT_PBM
	
portable bitmap

	
	VIPS_FOREIGN_PPM_FORMAT_PGM
	
portable greymap

	
	VIPS_FOREIGN_PPM_FORMAT_PPM
	
portable pixmap

	
	VIPS_FOREIGN_PPM_FORMAT_PFM
	
portable float map

	
	VIPS_FOREIGN_PPM_FORMAT_PNM
	
portable anymap

	
	VIPS_FOREIGN_PPM_FORMAT_LAST
	 	

enum VipsForeignDzLayout

What directory layout and metadata standard to use.

Members

	VIPS_FOREIGN_DZ_LAYOUT_DZ
	
use DeepZoom directory layout

	
	VIPS_FOREIGN_DZ_LAYOUT_ZOOMIFY
	
use Zoomify directory layout

	
	VIPS_FOREIGN_DZ_LAYOUT_GOOGLE
	
use Google maps directory layout

	
	VIPS_FOREIGN_DZ_LAYOUT_IIIF
	
use IIIF v2 directory layout

	
	VIPS_FOREIGN_DZ_LAYOUT_IIIF3
	
use IIIF v3 directory layout

	
	VIPS_FOREIGN_DZ_LAYOUT_LAST
	 	

enum VipsForeignDzDepth

How many pyramid layers to create.

Members

	VIPS_FOREIGN_DZ_DEPTH_ONEPIXEL
	
create layers down to 1x1 pixel

	
	VIPS_FOREIGN_DZ_DEPTH_ONETILE
	
create layers down to 1x1 tile

	
	VIPS_FOREIGN_DZ_DEPTH_ONE
	
only create a single layer

	
	VIPS_FOREIGN_DZ_DEPTH_LAST
	 	

enum VipsForeignDzContainer

How many pyramid layers to create.

Members

	VIPS_FOREIGN_DZ_CONTAINER_FS
	
write tiles to the filesystem

	
	VIPS_FOREIGN_DZ_CONTAINER_ZIP
	
write tiles to a zip file

	
	VIPS_FOREIGN_DZ_CONTAINER_SZI
	
write to a szi file

	
	VIPS_FOREIGN_DZ_CONTAINER_LAST
	 	

enum VipsForeignHeifCompression

The compression format to use inside a HEIF container.

This is assumed to use the same numbering as heif_compression_format.

Members

	VIPS_FOREIGN_HEIF_COMPRESSION_HEVC
	
x265

	
	VIPS_FOREIGN_HEIF_COMPRESSION_AVC
	
x264

	
	VIPS_FOREIGN_HEIF_COMPRESSION_JPEG
	
jpeg

	
	VIPS_FOREIGN_HEIF_COMPRESSION_AV1
	
aom

	
	VIPS_FOREIGN_HEIF_COMPRESSION_LAST
	 	

enum VipsForeignHeifEncoder

The selected encoder to use.
If libheif hasn't been compiled with the selected encoder,
we will fallback to the default encoder for the compression format.

Members

	VIPS_FOREIGN_HEIF_ENCODER_AUTO
	
auto

	
	VIPS_FOREIGN_HEIF_ENCODER_AOM
	
aom

	
	VIPS_FOREIGN_HEIF_ENCODER_RAV1E
	
RAV1E

	
	VIPS_FOREIGN_HEIF_ENCODER_SVT
	
SVT-AV1

	
	VIPS_FOREIGN_HEIF_ENCODER_X265
	
x265

	
	VIPS_FOREIGN_HEIF_ENCODER_LAST
	 	

Property Details

The “access” property

 “access” VipsAccess

Required access pattern for this file.

Owner: VipsForeignLoad

Flags: Read / Write

Default value: VIPS_ACCESS_RANDOM

The “disc” property

 “disc” gboolean

Open to disc.

Owner: VipsForeignLoad

Flags: Read / Write

Default value: TRUE

The “fail” property

 “fail” gboolean

Fail on first warning.

Owner: VipsForeignLoad

Flags: Read / Write

Default value: FALSE

The “fail-on” property

 “fail-on” VipsFailOn

Error level to fail on.

Owner: VipsForeignLoad

Flags: Read / Write

Default value: VIPS_FAIL_ON_NONE

The “flags” property

 “flags” VipsForeignFlags

Flags for this file.

Owner: VipsForeignLoad

Flags: Read / Write

The “memory” property

 “memory” gboolean

Force open via memory.

Owner: VipsForeignLoad

Flags: Read / Write

Default value: FALSE

The “out” property

 “out” VipsImage *

Output image.

Owner: VipsForeignLoad

Flags: Read / Write

The “revalidate” property

 “revalidate” gboolean

Don't use a cached result for this operation.

Owner: VipsForeignLoad

Flags: Read / Write

Default value: FALSE

The “sequential” property

 “sequential” gboolean

Sequential read only.

Owner: VipsForeignLoad

Flags: Read / Write

Default value: FALSE

The “background” property

 “background” VipsArrayDouble *

Background value.

Owner: VipsForeignSave

Flags: Read / Write

The “in” property

 “in” VipsImage *

Image to save.

Owner: VipsForeignSave

Flags: Read / Write

The “keep” property

 “keep” VipsForeignKeep

Which metadata to retain.

Owner: VipsForeignSave

Flags: Read / Write

Default value: VIPS_FOREIGN_KEEP_EXIF | VIPS_FOREIGN_KEEP_XMP | VIPS_FOREIGN_KEEP_IPTC | VIPS_FOREIGN_KEEP_ICC | VIPS_FOREIGN_KEEP_OTHER

The “page-height” property

 “page-height” int

Set page height for multipage save.

Owner: VipsForeignSave

Flags: Read / Write

Allowed values: [0,10000000]

Default value: 0

The “profile” property

 “profile” char *

Filename of ICC profile to embed.

Owner: VipsForeignSave

Flags: Read / Write

Default value: NULL

The “strip” property

 “strip” gboolean

Strip all metadata from image.

Owner: VipsForeignSave

Flags: Read / Write

Default value: FALSE

See Also

<link linkend="libvips-image">image</link>

Generated by GTK-Doc V1.33.1

